Доклады Академии наук СССР 1972. Том 203. № 4

УДК 541.182.2/3

ТЕХНИЧЕСКАЯ ФИЗИКА

В. Д. ИВАНОВ, В. Н. КИРИЧЕНКО, В. М. БЕРЕЖНОЙ, академик И. В. ПЕТРЯНОВ

О ВЛИЯНИИ СОБСТВЕННОЙ СКОРОСТИ СЕДИМЕНТАЦИИ БЕТА-АКТИВНЫХ ГОРЯЧИХ ЧАСТИЦ НА ИХ СТАЦИОНАРНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД ПРИ НАЛИЧИИ ПРИМЕСИ ПОСТОЯННОГО АЭРОЗОЛЯ

В работе (1) было экспериментально показано, что возникающий за счет эмиссии электронов средний стационарный положительный электрический заряд бета-активных «горячих» аэрозольных частиц заметно увеличивается с ростом их радиуса. Это, однако, не вытекало из приведенных в ней теоретических оценок и предполагалось как следствие непрерывного «убегания» частиц от собственной ионной атмосферы за счет стационарной скорости седиментации. В данной работе сделана попытка получить теоретическую зависимость среднего стационарного заряда таких частиц от скорости седиментации и кроме того учесть влияние на него постороннего аэрозоля. Результаты полвергнуты экспериментальной проверке.

Будем рассматривать горячую частицу в виде сферы радиуса r_0 , движущейся под действием силы тяжести со стационарной скоростью u через газовую среду, содержащую посторонний аэрозоль с концентрацией частиц n. Образующиеся в треках β -частиц газовые ионы с коэффициентом диффузии D и электрической подвижностью μ захватываются посторонним аэрозолем с вероятностью в единицу времени $\gamma \sim n$. Средний стационарный заряд «горячей» частицы eZ_0 устанавливается при равенстве скорости испускания ею β -частиц I обратному диффузионному потоку $I(Z_0, u, \gamma)$. Для вычисления этого потока условимся, что действие кулоновской силы ограничено снаружи концентричной сферой $\alpha = \mu eZ_0/D > r_0$, диффундируя на которую извне, отрицательные ноны полностью захватываются сферой r_0 , а положительные — полностью отталкиваются. Такая модель строго обоснована в случае неподвижной сферы радиуса менее $10~\mu$ с зарядом от $20~\eta$ 0 10^3 элементарных, т. е. при условии

$$r_0 < \alpha < \lambda$$
. (1)

где λ — среднее расстояние между парами ионов в треке β -частицы (¹). Это условие позволяет, кроме того, пренебречь профилем скорости среды вблизи сферы r_0 .

При таком допущении задача становится эквивалентной задаче о конвективной диффузии к шару, которая в случае отсутствия объемных источников и малых чисел $\text{Pe} = 2u\alpha/D$ решена методом сингулярных возмущений (2). В нашем случае из-за наличия неравномерного объемного источника ионов использование этого метода не представляется возможным.

Обозначим через $W(r, \theta, t)$ илотность вероятности того, что ион, начавший движение в нулевой момент времени в точке S (см. рис. 1), впервые достигнет поверхности движущейся сферы α в момент времени t. В качестве приближения будем считать плотность вероятности равной таковой для неподвижной сферы в момент t при условии, что она перенесена сразу после рождения иона по направлению скорости \mathbf{u} на расстояние ut от на-

$$W(\xi, \theta, \tau) = W^*(\xi', \tau). \tag{2}$$

Здесь $\xi = r/\alpha$ и $\xi' = r'/\alpha$ — безразмерные радиальные координаты; $\tau = Dt/\alpha^2$ — безразмерное время. Величины ξ' и ξ связаны соотношением (см. рис. 1)

 $\xi' = (\xi + v^2 \tau^2 + 2v\tau \cos \theta)^{\frac{1}{2}}, \tag{3}$

где $v = u\alpha/D$ — безразмерная скорость частицы относительно среды, равная половине параметра ${\rm Pe}.$

Интересующий нас поток ионов на сферу α , когда ее центр движется достаточно долго и заряд уже не меняется, можно выразить через функцию W^* как

$$J = I \frac{\alpha}{\lambda} \int_{0}^{\infty} \int_{1}^{\infty} \int_{0}^{\pi} W^*(\xi', \tau) \cdot \frac{1}{2} \sin \theta \, d\tau \, d\xi' d\theta, \tag{4}$$

где множитель $^{1}\!/_{2}$ возникает из-за угловой изотропии вылета β -частиц. В выбранной нами модели функция W^{*} удовлетворяет уравнению Колмогорова (3)

$$\frac{\partial W^*}{\partial \tau} = \frac{\partial^2 W^*}{\partial \xi'^2} + \frac{2}{\xi'} \frac{\partial W^*}{\partial \xi'} - \sigma W^*, \tag{5}$$

где $\sigma = \gamma \alpha^2/D$ — безразмерная вероятность захвата ионов средой, содержащей посторонний аэрозоль. Граничные и начальные условия для функции W^* таковы:

$$W^*(1, \tau) = \delta(\tau),$$
 $W^*(\xi', 0) = 0 \quad \text{при} \quad \xi' > 1,$
 $W^*(\xi', \tau) \to 0 \quad \text{при} \quad \xi' \to \infty.$

Здесь $\delta(\tau)$ — дельта-функция.

Решение уравнения (5) при условиях (6) методом интегрального преобразования дает выражение для лапласова образа W^* в виде

$$L_{p}^{\tau}\left[W^{*}\left(\xi',\tau\right)\right] = \frac{1}{\xi'\left(\xi,\theta,\tau\right)}\exp\left(\sqrt{p+\sigma}\left[1-\xi'\left(\xi,\theta,\tau\right)\right]\right),\tag{7}$$

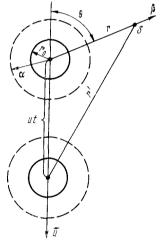


Рис. 1. К расчету стационарного заряда

где ξ' дается выражением (3), а аргумент τ функции ξ' является параметром, по которому преобразование не производится. Выполняя обратное преобразование (7) и интегрируя (4) по θ , ξ и τ , получаем искомое выражение для потока ионов на сферу α :

$$J(\alpha, v, \sigma) = \frac{I\alpha}{v\lambda} \left\{ e^{y_1} E i \left(-y_1 \right) - e^{y_2} E i \left(-y_2 \right) + \ln \frac{y_2}{y_1} + \frac{1}{2\sqrt{\pi}} \int_{1}^{\infty} e^{1/2v\xi} \frac{d\xi}{\xi} \int_{\xi/v}^{\infty} e^{-\tau(\sigma+1/4v^2) - (1+\xi^2)/(4\tau)} \left[e^{1/2v-\xi/(2\tau)} - e^{-1/2v+\xi/(2\tau)} \right] \frac{d\tau}{\tau^{3/2}} \right\}, \quad (8)$$

где
$$y_1 = \sqrt{\sigma + \frac{1}{4}v^2} - \frac{1}{2}v$$
, $y_2 = \sqrt{\sigma + \frac{1}{4}v^2} + \frac{1}{2}v$ и $Ei(-y) = \int_{\infty}^{y} \frac{e^{-x}}{x} dx$.

Оценки показали, что для вычисления потока можно пренебречь иптегральным членом в (8), так как его вклад, максимальный при $\sigma=0$, не превышает $5\,\%$, если $v\leqslant 10^{-2}$, что выполняется в воздухе при нормальных

условиях для частиц радиусом менее $10~\mu$ с зарядом, не превышающим 10^{3} элементарных.

Из выражения (8) можно получить следующие асимптотики: при $4\sigma/v^2 \ll 1$ и $v \ll 1$, в том числе при $\sigma = 0$,

$$J(\alpha, \nu) = -I \frac{\alpha}{\lambda} (\ln \gamma_1 \nu - 1), \tag{8a}$$

где γ_1 — постоянная Эйлера, т. е. поток не зависит от примеси постороннего аэрозоля и пропорционален логарифму радиуса частицы при $4\sigma/v^2 \ll 1$, в том числе при v=0,

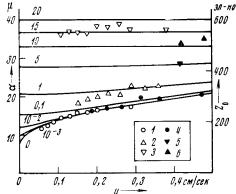


Рис. 2. Зависимость среднего стационарного заряда бета-активных горячих частиц от скорости седиментации и примеси постороннего аэрозоля. $I, 4-\gamma < < 10^{-2} \ {\rm cek}^{-1}, \ 2-\gamma \simeq 1, \ 3-\gamma = 18, \ 5-4, 5<\gamma < 9, \ 6-9<\gamma < 18 \ {\rm cek}^{-1}; \ I-3-{\rm cmona}, \ d=1,1 \ {\rm r/cm}^3, \ 4-6-{\rm ctekno}, \ d=2,0 \ {\rm r/cm}^3.$ Цифрами у кривых показаны значения γ (сек $^{-1}$)

$$J(\alpha, \sigma) = -I \frac{\alpha}{\lambda} e^{\sqrt{\sigma}} Ei(-\sqrt{\sigma}), (86)$$

т. е. поток не зависит от размера частицы.

Отбрасывая в (8) интегральный член и приравнивая поток ионов J бета-активности I получаем не зависящее от последней соотношение для вычисления радиуса поглощающей сферы α , пропорционального среднему значению стационарного заряда «горячей» частицы eZ_0 :

$$e^{y_{1}}Ei(-y_{1}) - e^{y_{2}}Ei(-y_{2}) + \ln \frac{y_{2}}{y_{1}} = \frac{v\lambda}{\alpha(v,\sigma)}.$$
 (9)

На рис. 2 показаны вычисленные из (9) при $\lambda = 80 \,\mu$, $\mu = 1.4 \,\mathrm{cm^2}/\,(\mathrm{B\cdot cek})$ и $D = 0.03 \,\mathrm{cm^2\cdot cek^{-1}}$ графики функции $\alpha(u)$ для

различных значений величины γ , пропорциональной концентрации постороннего аэрозоля. Из графиков видно, что при $\gamma=10^{-2}~{\rm cek}^{-1}$, т. е. в обычном атмосферном или более чистом воздухе, посторонний аэрозоль не влияет на радиус сферы α и соответственно на заряд горячей частицы eZ_0 , который медленно возрастает с увеличением ее скорости седиментации. Увеличение концентрации постороннего аэрозоля и величины γ приводит к медленному росту α и заряда частицы вначале при малых скоростях седиментации, а затем по всему выбранному диапазону. Условие (1) при этом выполнено. Характерно, что значения среднего стационарного электрического заряда горячих частиц микронных размеров отличаются не более чем в 3 раза во всем реальном диапазоне примесей относительно устойчивого аэрозоля.

Влияние постороннего аэрозоля на стационарный заряд бета-активных горячих частиц было изучено нами экспериментально. Для этого использовались сферические частицы радиусом 1—6 μ из полимерной смолы и стекла, активированные Au¹⁹⁸ с максимальной энергией β-частиц 0,96 Мэв. Способ их приготовления, установка для получения аэрозоля, а также устройство для измерения электрических зарядов частиц описаны в (¹). Отличие состояло в том, что перед распылением суспензии активированных частиц в колонку, где они выдерживались до приобретения стационарных зарядов, вводился туман, полученный распылением нагретого турбинного масла, до тех пор, пока его счетная концентрация, измеряемая ультрамикроскопом ВДК-4, не устанавливалась на стационарном уровне. Радиус частиц тумана не превышал 0,3 μ.

Для оценки величины γ мы использовали связь между γ и суммарным стационарным зарядом частиц тумана $\sum eZ$ в единице объема аэрозоля,

находящегося в биполярно-ионизированной атмосфере. Этот заряд для частиц радиусом более 0,1 µ может быть рассчитан по формуле (4)

$$\sum_{i} eZ = ne \int_{0}^{\infty} f(r) Z(r) dr, \qquad (10)$$

где n — счетная концентрация аэрозоля, $\overline{Z}(r) = (2rkT/(\pi e^2))^{\frac{r}{2}} = Ar^{\frac{r}{2}}$ — среднее значение по модулю числа элементарных зарядов на частицах радиуса r (5) и f(r) — нормированная функция распределения частиц по размеру, для которой мы использовали формулу Нукиямы и Танасавы (6), оправдавшую себя для туманов, получаемых механическим распылением жидкостей: $f(r) = ar^2 \exp(-brS)$. Здесь a и b являются определенными функциями S, так что

$$f(r) = \frac{2^{3/S}S^{1-3/S}}{r_m^3\Gamma(3/S)} r^2 \exp\left(-\frac{2}{S} \left(\frac{r}{r_m}\right)^S\right),\tag{11}$$

где r_m — наиболее вероятный радиус частиц, а Γ — гамма-функция. Так

как
$$\gamma = 4\pi Dn \int_{0}^{\infty} f(r) r dr$$
, то подстановка сюда и в (10) функции $f(r)$ из

(11) и исключение из обоих выражений r_m приводит к искомому соотношению

$$\gamma = \frac{\Gamma(3/S) \cdot \Gamma(4/S)}{\Gamma^2(7/(2S))} \frac{4\pi D}{A^2 n e^2} \left(\sum eZ\right)^2. \tag{12}$$

Множитель, содержащий гамма-функции, близок к единице при любых S>1, что соблюдается для используемого масляного тумана, поэтому окончательно имеем

$$\gamma = \frac{2\pi^2 D}{nkT} \left(\sum eZ \right)^2. \tag{12a}$$

Для измерения суммарного стационарного заряда $\sum eZ$ масляный туман отбирался из нижней части колонны в плоский конденсатор объемом до 20 см³, где под действием внешнего источника излучения в нем устанавливалось стационарное распределение зарядов. Затем источник убирался, на электроды подавалось напряжение и собранный на одном из них заряд измерялся динамическим электрометром с чувствительностью $4 \cdot 10^{-16}$ кулона. Величина у варьировалась путем разбавления масляного тумана.

На рис. 2 результаты измерений средних стационарных зарядов бетаактивных грячих частиц при различных значениях γ сопоставлены с расчетами на основе предложенной модели. Использованы также результаты, полученные ранее (¹) для частиц из смолы при γ < 10⁻² сек⁻¹. Видно, что экспериментальные результаты находятся в хорошем согласии с предложенной теоретической моделью, учитывающей влияние собственной скорости седиментации частиц и примеси постороннего аэрозоля.

Физико-химический институт им. Л. Я. Карпова Москва Поступило 30 XI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Д. Иванов, В. Н. Кириченко, ДАН, 188, № 1 (1969). ² А. Acrivos, Phys. Fluids, 5, № 4 (1962). ³ А. Kolmogoroff, М. Leontowitsch, Phys. Zs. Sovjetunion, 4, 1 (1933). ⁴ Н. А. Фукс, А. Г. Сутугин, Высокодисперсные аэрозоли, Итоги науки, сер. Химия, М., 1969. ⁵ П. Лисовский, ЖФХ, 14, в. 1, 521 (1940). ⁶ Н. А. Фукс, Механика аэрозолей, Изд. АН СССР, 1955, стр. 19.