химия

И. А. ПРОКОПЬЕВА, В. Д. ГАЛЯМИНСКИХ, Г. А. АБАКУМОВ, Р. О. МАТЕВОСЯН, А. К. ЧИРКОВ

ОБ ОСОБЕННОСТЯХ СТРОЕНИЯ И СВОЙСТВ ИМИНОКСИЛЬНЫХ РАДИКАЛОВ В КРИСТАЛЛИЧЕСКОМ СОСТОЯНИИ И В РАСТВОРАХ

(Представлено академиком Γ . А. Разуваевым 4 I 1972)

Ранее (¹) было показано, что кристаллические комплексы пикрилгидразинов с аминами сохраняют свои параметры в растворах. На основании этого нам представилось возможным свойства иминоксильного радикала 2,2,6,6-тетраметил-4-оксопинеридин-1-оксила (І), кристаллизованного из различных углеводородов, рассматривать не как явление клатратизации, как это предполагалось в работе (²), а как явление полиморфизма данного радикала, вызванное различными условиями кристаллообразования. Для выявления этого вопроса нами были получены предполагаемые клатраты иминоксильного радикала путем кристаллизации его из гексана, гептана, октана и нонана. Некоторые параметры полученых продуктов приведены в табл. 1, из данных которой видно, что радикал, кристаллизованный из гексана, не меняет температуры плавления по сравнению с исходным, при кристаллизации же из гептана, октана и нонана изменяется

Таблица **1** Некоторые параметры радикала I, полученного из различных растворителей

Ра с тво-			н	айдено,	%	Вь	пислен	o, %
ритель	Т. пл., °С	Цвет и форма кристаллов	С	н	N	С	H	N
Бензол Гексан Гептан Октан Нонан	36 46 48 52 54	Темно-оранжевые иглы Темно-оранжевые иглы Оранжевые иглы Желто-оранжевые иглы Светло-оранжевые иглы	63,87 63,36 63,48 63,77	$9,68 \\ 9,65$	8,24 8,40 8,31 7,95	63,56 63,56 63,56 63,56	9,41 9,41 9,41 9,41	8,24 8,24 8,24 8,24

окраска радикала и его температура плавления. Казалось бы, налицо факт клатратизации соединений I с приведенными выше растворителями (²). Однако после вакуумной сушки ($P_{\text{ост}} = 1-3$ мм рт. ст.) в течение 20-25 час. полученные продукты имели те же самые температуры плавления, что и исходные, не подвергнутые воздействию вакуума, и данные элементарного анализа этих соединений указывают на отсутствие включения растворителя в решетку радикала (см. табл. 1). Учитывая, что возможные различия в составе из-за небольшего числа молекул включенного растворителя могут быть за пределами чувствительности аналитического метода, были предприняты дальнейшие исследования, направленные на выявление причины изменения температуры плавления рассматриваемых образцов радикала в зависимости от природы растворителя. С этой целью были определены кристаллографические параметры образцов радикала I, кристаллизованных из гексана, гентана, октана и нонана рентгенографическими методами.

Рентгенограммы исследованных образцов получены по методу порошка в стандартной рентгеновской камере РКУ-114 М на характеристичном

 ${\bf Cu} K_{\alpha}$ -излучении. Рентгенограммы отличаются высокой удельной плотностью линий в области малых углов отражений и отсутствием линий в области углов обратных отражений. В табл. 2 приводятся значения брэгговских углов и относительных интенсивностей отражений, определенных по максимумам кривых фотометрирования рентгенограмм. Кривые фотометрирования, полученные на скоростном микрофотометре ${\bf G}_1{\bf B}_1$ фирмы «Карл Цейс, Иена», приведены на рис. 1. На полиморфный характер образцов иминоксила I указывают и теплоты растворения последних в бензоле (определены с точностью 1-1,5%).

Из приведенных рентгенографических и термохимических данных следует, что при кристаллизации радикала I из гексана, гептана, октана и

нонана образуется не четыре структуры, а всего три. Образцы, полученные из октана и нонана, практически не отличаются друг от друга не только температурой плавления, но и теплотами растворения и параметрами решетки. Известно, что клатраты существуют только в кристаллическом состоянии. При растворении их в растворителе, не образующем соединений типа клатратных, выделяют исходный продукт. Кристаллизуя же из гексана радикал, выделенный из гептана, октана и нонана. мы получили соединения с температурами плавления исходных радикалов. Следовательно, различия в свойствах иминоксильного радикала, наблюдаемые при выделении его из углеводородов, связаны с наличием различных структур радикала. Одновременно этим показано, что при растворении радикала определенной структуры в гексане до концентрации 1·10⁻⁵ мол/л выделяемый радикал имеет температуру плавления исходного образца. Таким

Рис. 1. Кривые фотометрирования дебаеграмм образцов иминоксильного радикала. *а*, *б*, *в*, *г* — модификации с температурами плавления 48°, 36°, 52°, 54° С соответственно

образом, процесс растворения полиморфных структур вещества — это не разрушение монокристалла до мономолекулярного состояния, а разрушение до системы вполне геометрически регулированной и близкой по соста- ву и строению к кристаллическому состоянию.

Гексан для полиморфных структур радикала I можно рассматривать как пассивный растворитель. Такие же растворители, как диоксан, спирт, вода, бензол приводят к нивелированию полиморфных структур, поэтому

их можно рассматривать как активные к этим структурам.

В работе (1) отмечалось существование зависимости физических и физико-химических свойств от полиморфизма для аминных комплексов гидразина. Поэтому представляло интерес проанализировать различные спектры поглощения для полиморфных структур иминоксильного радикала. Были сняты спектры поглощения в видимой и у.-ф. областях для гексановых растворов радикала, и.-к. спектры для кристаллических образцов и их растворов и спектры э.п.р. Практически не наблюдается зависимости между полиморфизмом радикала и его спектрами поглощения в видимой и у.-ф. областях. В случае спектров э.п.р. для образца, полученного из гексана, интенсивность кривой поглощения была почти в 1,5 раза меньше.

Таблица 2 Углы (*G*, град) и сравнительные интенсивности отражений*

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Т. пл. 54°	Т. 1	Т. пл. 52°		Т. ц л. 48°		т. пл. 36°		М линии на
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	G I	I G	I	G	I	G	I	G	рентгено- грамме
11	,70 41		37	5,69		5,68		6,72	1
11 13,50 17 10,34 13 11,43 14 11 12 14,17 35 10,97 18 11,80 13 11	,70 17	13 6,70	? 1 3	[6,69]	58	6,30		7,49	2
11 13,50 17 10,34 13 11,43 14 11 12 14,17 35 10,97 18 11,80 13 11	,55 70		100	7,03	400	0,45		9 26	3 /s
11 13,50 17 10,34 13 11,43 14 11 12 14,17 35 10,97 18 11,80 13 11	,97 100 ,37 77	00 7,97 82 8,37	100	8 38	28	7,33	5	8 62	5
11 13,50 17 10,34 13 11,43 14 11 12 14,17 35 10,97 18 11,80 13 11	,07 32	25 9,07	5 2	9,05	92	8.34	9	9.28	6
11 13,50 17 10,34 13 11,43 14 11 12 14,17 35 10,97 18 11,80 13 11	,28 26	23 9,28	$\tilde{2}$	9.30	66	8.59		10.28	7
11	,92 14	17 9,92	7 1	9,87	70	9,04		11,32	8
11	.32 12	22 10,32	7 22	10,27	9	9,58	20	11,89	9
11 13,50 17 10,34 13 11,43 14 11 12 14,17 35 10,97 18 11,80 13 11	,88 32	42 10,88	7 42	10,87	41	9,90	33	12,64	10
	,43 12	14 11,43	3 1 14	11,43	13	10.34	17	13,50	11
	,78 10	13 11,78) 13	11,80	18	10,97	35	14,17	12
13 14,70 7 11,50 22 12,59 32 12.	,66 37	32 12,66	32	12,59	22	11,50	7	14,70	13
14	,31 11	8 13,31	2 2	13,25	12	12,01	12	15,10	14
15 16,13 16 12,54 39 13,53 12 13,	,60 14	12 13,60	12	13,53		12,54	10	10,13	10 40
		24 1 4,18 1 4,65	$\frac{24}{100}$	14,16		13,14		10,71	10 47

^{*} Величины углов отражений определены с точностью ±0,5%.

чем для образцов, выделенных из гептана, октана и нонана. Как показано выше, нивелирования полиморфных структур радикала в гексане не происходит. Очевидно, что существует определенная селективность в зависимости физических и физико-химических свойств от полиморфизма радикала как в кристаллическом состоянии, так и в растворах, и изучение этой зависимости является весьма сложной и самостоятельной проблемой.

Уральский научный центр Академии наук СССР Свердловск

Поступило 27 XII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Р. О. Матевосян, В. Н. Панкратов, С. И. Алямовский, ДАН, 196, 1182 (1971). ² Э. Г. Розанцев, Теоретич. и эксп. хим., в. 2, 286 (1966).