И. А. ПРОКОПЬЕВА, В. Д. ГАЛЯМИНСКИХ, Г. А. АБАКУМОВ, Р. О. МАТЕВОСЯН, А. К. ЧИРКОВ

ОБ ОСОБЕННОСТЯХ СТРОЕНИЯ И СВОЙСТВ ИМИНОКСИЛЬНЫХ РАДИКАЛОВ В КРИСТАЛЛИЧЕСКОМ СОСТОЯНИИ И В РАСТВОРАХ

(Представлено академиком Г. А. Разуваевым 4 І 1972)

Ранее (¹) было показано, что кристаллические комплексы пикрилгидразинов с аминами сохраняют свои параметры в растворах. На основании этого нам представилось возможным свойства иминоксильного радикала 2,2,6,6-тетраметил-4-оксопинеридин-1-оксила (I), кристаллизованного из различных углеводородов, рассматривать не как явление клатратизации, как это предполагалось в работе (²), а как явление полиморфизма данного радикала, вызванное различными условиями кристаллообразования. Для выявления этого вопроса нами были получены предполагаемые клатраты иминоксильного радикала путем кристаллизации его из гексана, гептана, октана и нонана. Некоторые параметры полученных продуктов приведены в табл. 1, из данных которой видно, что радикал, кристаллизованный из гексана, не меняет температуры плавления по сравнению с исходным, при кристаллизации же из гептана, октана и нонана изменяется

Таблица 1

Раство- ритель	Т. пл., °С	Цвет и форма кристаллов	Найдено, %			Вычислено, %		
			С	н	N	С	Ħ	N
Бензол Гексан Гептан Октан Нонан	$36 \\ 46 \\ 48 \\ 52 \\ 54$	Темно-оранжевые иглы Темно-оранжевые иглы Оранжевые иглы Желто-оранжевые иглы Светло-оранжевые иглы	63,87 63,36 63,18 63,77	9,72 9,68 9,65 9,79		63,56 63,56 63,56 63,56 63,56	9,41 9,41 9,41 9,41	8,24 8,24 8,24 8,24 8,24

Некоторые параметры радикала I, полученного из различных растворителей

окраска радикала и его температура плавления. Казалось бы, налицо факт клатратизации соединений I с приведенными выше растворителями (²). Однако после вакуумной сушки ($P_{ocr} = 1-3$ мм рт. ст.) в течение 20-25 час. полученные продукты имели те же самые температуры плавления, что и исходные, не подвергнутые воздействию вакуума, и данные элементарного анализа этих соединений указывают на отсутствие включения растворителя в решетку радикала (см. табл. 1). Учитывая, что возможные различия в составе из-за небольшего числа молекул включенного растворителя могут быть за пределами чувствительности аналитического метода, были предприняты дальнейшие исследования, направленные на выявление причины изменения температуры плавления рассматриваемых образцов радикала в зависимости от природы растворителя. С этой целью были определены кристаллографические параметры образцов радикала I, кристаллизованных из гексана, гептана, октана и нонана рентгенографическими методами.

Рентгенограммы исследованных образцов получены по методу порошка в стандартной рентгеновской камере РКУ-114 М на характеристичном CuK_{α} -излучении. Рентгенограммы отличаются высокой удельной плотностью линий в области малых углов отражений и отсутствием линий в области углов обратных отражений. В табл. 2 приводятся значения брэгговских углов и относительных интенсивностей отражений, определенных по максимумам кривых фотометрирования рентгенограмм. Кривые фотометрирования, полученные на скоростном микрофотометре G_1B_1 фирмы «Карл Цейс, Иена», приведены на рис. 1. На полиморфный характер образцов иминоксила I указывают и теплоты растворения последних в бензоле (определены с точностью 4-1,5%).

> Радикал с т. пл. (°С) 36 48 52 54 Теплота растворения, ккал/мол +4,5 +4,0 +3,6 +3,5

Из приведенных рептгенографических и термохимических данных следует, что при кристаллизации радикала I из гексана, гептана, октана и

понана образуется не четыре структуры, а всего три. Образцы, полученные из октана и понана, практически не отличаются друг от друга не только температурой плавления, но и теплотами растворения и параметрами решетки. Известно, что клатраты существуют только в кристаллическом состоянии. При растворении их в растворителе, не образующем соединений типа клатратных, выделяют исходный продукт. Кристаллизуя же из гексана радикал, выделенный из гептана. октана и нонана. мы получили соединения с температурами плавления исходных радикалов. Следовательно, различия в свойствах иминоксильного радикала, наблюдаемые при выделении его из углеводородов, связаны с наличием различных структур радикала. Одновременно С этим показано, что при растворении радикала определенной структуры в гексане до концентрации 1·10⁻⁵ мол/л выделяемый радикал имеет температуру плавления исходного образца. Таким

Рис. 1. Кривые фотометрирования дебаеграмм образцов иминоксильного радикала. *а*, *б*, *в*, *г* — модификации с температурами плавления 48°, 36°, 52°, 54° С соответственно

образом, процесс растворения полиморфных структур вещества — это не разрушение монокристалла до мономолекулярного состояния, а разрушение до системы вполне геометрически регулированной и близкой по составу и строению к кристаллическому состоянию.

Гексан для полиморфных структур радикала I можно рассматривать как пассивный растворитель. Такие же растворители, как диоксан, спирт, вода, бензол приводят к нивелированию полиморфных структур, поэтому их можно рассматривать как активные к этим структурам.

В работе (¹) отмечалось существование зависимости физических и физико-химических свойств от полиморфизма для аминных комплексов гидразина. Поэтому представляло интерес проанализировать различные спектры поглощения для полиморфных структур иминоксильного радикала. Были сняты спектры поглощения в видимой и у.-ф. областях для гексановых растворов радикала, и.-к. спектры для кристаллических образцов и их растворов и спектры э.п.р. Практически не наблюдается зависимости между полиморфизмом радикала и его спектрами поглощения в видимой и у.-ф. областях. В случае спектров э.п.р. для образца, полученного из гексана, интенсивность кривой поглощения была почти в 1,5 раза меньше.

8* 371

Таблица 2

Углы (<i>G</i> ,	град)	и сравнительные	интенсивности	отражений *	*
-------------------	-------	-----------------	---------------	-------------	---

ла линии на	Т. пл. 36°		Т. п л. 48°		Т. пл. 52°		Т. п л. 54°	
рентгено- грамме	G	I	G	I	G	I	G	I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 16	6,72 7,49 7,94 8,36 9,28 10,28 11,32	$\begin{array}{c} 22\\ 80\\ 100\\ 8\\ 5\\ 9\\ 31\\ 14\\ 20\\ 33\\ 17\\ 35\\ 7\\ 12\\ 16\\ 26\end{array}$	5,68 6,30 6,45 7,55 7,84 8,34 8,59 9,04 9,58 9,90 10,34 10,97 11,50 12,01 12,54 13,14	92 58 50 100 28 92 66 70 9 41 13 18 22 12 39 12	$\begin{array}{c} 5,69\\ 6,69\\ 7,53\\ 7,94\\ 8,38\\ 9,05\\ 9,30\\ 9,87\\ 10,27\\ 10,87\\ 11,43\\ 11,80\\ 12,59\\ 13,25\\ 13,53\\ 14,16\end{array}$	37 13 70 100 82 25 23 17 22 42 42 14 13 32 8 12 24	5,70 6,70 7,55 7,97 9,07 9,28 9,92 10,32 10,88 11,43 11,78 12,66 13,31 13,60 14,18	41 17 70 100 77 32 26 14 12 32 12 10 37 11 14 27

* Величины углов отражений определены с точностью ±0,5%.

чем для образцов, выделенных из гептана, октана и нонана. Как показано выше, нивелирования полиморфных структур радикала в гексане не происходит. Очевидно, что существует определенная селективность в зависимости физических и физико-химических свойств от полиморфизма радикала как в кристаллическом состоянии, так и в растворах, и изучение этой зависимости является весьма сложной и самостоятельной проблемой.

Уральский научный центр Академии наук СССР Свердловск

Поступило 27 XII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Р. О. Матевосян, В. Н. Панкратов, С. И. Алямовский, ДАН, 196, 1182 (1971). ² Э. Г. Розанцев, Теоретич. и эксп. хим., в. 2, 286 (1966).