Доклады Академии наук СССР 1972. Том 204, № 2

ГЕОХИМИЯ

В. З. ФУРСОВ РТУТЬ В ГОРНЫХ ПОРОДАХ И РУДАХ И ТЕМПЕРАТУРЫ ЕЕ ВОЗГОНКИ

(Представлено академиком В. И. Смирновым 1 III 1971)

Для исследований было использовано 1830 штуфных проб массой 200-300 г, отобранных из 400 разновозрастных массивов горных пород и 160 рудных месторождений, расположенных в различных регионах СССР, а также образцы четырех каменных метеоритов. При подготовке и анализе проб соблюдались меры предосторожности от взаимного заражения. Содержания Нд определялись прибором Каз-РАФ-4 в два этапа. Первый этап — возгонка из пробы Нд совместно с мешающими примесями и осаждение ее на золотом «струнном» сорбенте (1, 8). Второй этап десорбция Не путем подогрева сорбента электрическим током и измерение концентраций десорбированной Нд прибором в условиях отсутствия мешающих примесей в дианазоне от $1 \cdot 10^{-3}$ до $8 - 10 \cdot 10^{-3}$ %. Все пробы были объединены в единую серию, в которой последовательность анализа проб рандомизировалась с помощью таблиц случайных чисел. Для уменьшения ошибки рандомизация и анализ серии были выполнены четыре раза. Для однородности измерений во времени анализ выполнялся на одном приборе непрерывно в течение 20 дней. Время между дроблением первой пробы и анализом последней не превышало 4 мес. Эталонировка приборов производилась при помощи твердых и газовых эталонов и показала идентичные результаты.

Описанная методика анализа позволила исключить систематическую ошибку внутри серии проб; средняя относительная случайная ошибка результатов анализа ±8%. Величина геохимической дисперсии была использована для определения с надежностью 0,68 доверительных интервалов среднегеометрических содержаний, которые были пересчитаны в среднеарифметические концентрации по формуле для логнормального распределения (2). Для сравнения средних содержаний Нд в горных породах и рудах был использован t-критерий с уровнем значимости 0,9 для логнормального распределения с учетом соотношения геохимических дисперсий (2, 3).

Анализ данных показывает, что средние концентрации Hg в горных породах различаются пезначительно. При этом различие средних концентраций в интрузивных — осадочных и эффузивных — метаморфических породах незначимо. Между любым типом горных пород и руд установлены значимые различия в средних концентрациях Hg, которые для подавляющего большинства месторождений в 3—70 раз больше, чем в горных породах.

Средние содержания Hg в рудах колчеданных месторождений и коры выветривания значимо отличаются от средних содержаний Hg в рудах любых типов месторождений. Наибольшие средние концентрации Hg характерны для руд медных ($303 \cdot 10^{-6} \%$), кобальтово-никелевых ($237 \cdot 10^{-6} \%$), свищово-цинковых ($229 \cdot 10^{-6} \%$), сурьмяных ($146 \cdot 10^{-6} \%$), золотых и оловянных ($77 \cdot 10^{-6} \%$) месторождений. Относительно высокие средние концентрации установлены в рудах некоторых тантало-ниобиевых месторождений ($105 \cdot 10^{-6} \%$). Низкие средние концентрации ($4-7 \cdot 10^{-6} \%$) Hg характерны для некоторых скарновых месторождений бериллия и гидротермальных месторождений асбеста и пьезокварца.

В основу метода разделения валовых концентраций Нд на составляющие, соответствующие определенным формам ее нахождения в породе или руде, был положен известный принцип: каждое вещество имеет максималь-

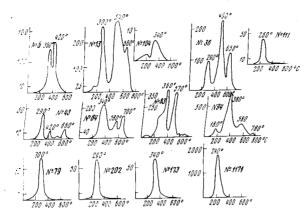


Рис. 1. Графики скорости возгонки ртути (по оси ординат — содержание Hg, 10⁻⁷%). Масса проб 0,5—0,2 г. № 5 — Аллареченское магматическое Ni — Со-месторождение (региоп XXI); 13 — пегматитовое Та — Ni-месторождение (III); 104 — Керченское осидочное Fе-месторождение; 36 — Кансайское скарновое Рb — Zn-месторождение (XV); 43 — молибденовое грейзеновое месторождение Акчатау (II); 64 — Северо-Акатуевское гидротермальное Pb — Zn-месторождение (VII); 83 — телетермальное Sb-месторождение Кадамджай (XIX); 94 — Си-колчеданное месторождение «50 лет Октября» (V); 79 — доломиты докембрия (I, IV); 202 — кварциты докембрия (I, II, VI); 111 — диориты перми (I, II); 173 — базальты силура (I); 1171 — каменный метеорит

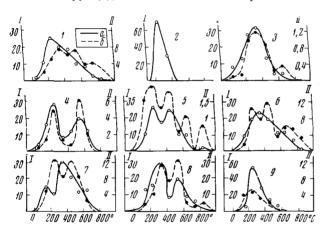


Рис. 2. Вариационные кривые распределения температур максимумов скорости возгонки ртути (a) и соответствующие им концентрации ртути в пробах (б). I — частость (%), II — содержание Hg (10^{-5} %). I — рудпые месторождения ($n_1=129,\ n_2=2.7,\ rдe\ n_1$ — число объектов, n_2 — среднее число максимумов возгонки); 2 — горные породы ($n_1=100,\ n_2=1.05$); 3 — магматические месторождения ($n_1=10,\ n_2=2.5$); 4 — пегматитовые ($n_1=9,\ n_2=2.7$); 5 — скарновые ($n_1=20,\ n_2=2.8$); 6 — гидротермальные ($n_1=3.4,\ n_2=3.5$); 7 — телетермальные ($n_1=8,\ n_2=2.5$); 8 — колчеданные ($n_1=10,\ n_2=3.5$); 9 — осадочные ($n_1=12,\ n_2=1.4$)

ную скорость испарепия (возгонки), которая определяется только температурой поверхности и свойствами вещества (4). Для реализации этого принципа была использована специальная установка, в которой температура пробы возрастала линейно от 20 до 900—1000°. Одновременно самописцем фотометра записывалось изменение скорости возгонки Hg (⁵, ⁸). Из руд (3-5 проб) одного месторождения и каждого типа горных пород (5— 10 проб) определенного возраста приготовлялась сборная проба.

Ртуть в рудах месторождений имеет большее число форм нахождения и возгоняется в более широком термоспектре по сравнению с Нg, находящейся в горных породах и метеори-(puc. 1). тах Цля руд максимальные скорости возгонки соответствуют температурам 100-900°, а для горцых пород и каменных 200-500° метеоритов (рис. 2). В подавляющем числе случаев максимальная скорость возгонки Не из горных пород и руд лежит в ин-200—300°. B тервале меньшем числе случаев максимальная скорость возгонки Нд из пород и руд находится в интервале 300—400°, что, весоответствует роятно, киновари (рис. 2). В большем числе случаев максимальная скорость возгонки Нд для руд магматических, гидро-

термальных, телетермальных и колчеданных месторождений соответствует интервалу температур 300—400°. Для руд эндогенных месторождений максимальная скорость возгонки лежит в интервале 100—900°, а для руд осадочных месторождений 100—600°. Среднее число составляющих для

Породы и месторождения	Содержание	Регионы	n
Интрузивные (10): Граниты и гранодиориты (9) Диориты (8) Габбро (9) Гипербазиты (6) Эффузивные (13): Риолиты (12) Андезиты (8) Базальты (10) Метаморфические (7): Сланцы (7) Мраморы (4) Кварциты (6) Гнейсы (4) Амфиболиты (2) Осадочные (13): Аргиллиты, глины (11) Песчаники, пески (12) Гравелиты, конгломераты (11) Сплициты (10) Известняки (12) Доломиты (8)	$\begin{array}{c} 2,9-6,7-15,6\\ 2,8-6,7-16,2\\ 3,4-7,5-16,4\\ 2,8-6,5-15,7\\ 3,2-6,3-12,7\\ 2,3-5,2-11,5\\ 2,4-5,4-12,2\\ 2,3-5,1-11,9\\ 1,7-4,0-7,9\\ 1,9-4,1-8,2\\ 2,0-4,2-8,7\\ 3,5-9,4-24,8\\ 2,8-7,6-21\\ 2,2-4,7-10\\ 2,9-6,6-15\\ 3,6-9,1-22,4\\ 3,2-6,6-13,7\\ 3,2-7,4-16,3\\ 2,9-7,0-16,0\\ 2,6-6,8-18,2\\ 2,4-5,2-10,2\\ 1,8-3,7-7,3\\ \end{array}$	I-VII I, II, IV, V, VI, IX, X I, V, VI, IX, X I-III, V I-IV, X-XIV I-IV, X I, II, IV, V, X-XII I, II, VII, IX I, VII, XV I-V, VI I, II, V, XIV II, III, VI II, IV-VI, XVI, XXIII I, II, IV, V, XVII, XXIII I, II, IV, V, XVII, XVIII I, II, IV-VI, XIX I, IV, VI, XIV, XVIII I, II, IV, V, XVIII, XXIII I, II, IV-VI, XIX I, IV, VI, XIV, XVIII, XXIII I, II, IV-VI, XIX I, IV, VI, XIV, XVIII, XXIII I, II, IV, VI, XIV, XVIII I, XX	267 83 61 80 43 263 100 79 84 484 59 28 50 27 20 612 104 92 111 78 62 106 59
Магматические (11): Ni-Co (5), апатит (1), Fe (2), Cr (2),	22—62—115	IV, V, XIV, XXI, XXII	49
Ті (1) Пегматитовые (11): Sn (1), Та-Nb (4), Ве (1), слюды	25 —98—3 86	III, VI, XII, XIV, XX, XXIII, XXIV	35
(4), пьезокварц (1) Карбонатитовые (3):	20 —46— 72	VII, XXI	11
Та-Nb (1), слюды (2) Скарновые (24): Fe (8), W (3), Cu (2), Pb-Zn (3),	30 —103—3 42	II, IV, IX, XII, XV, XVIII, XIX	90
Ве (5), В (3) Альбититовые (2):	13 —35—9 3	VII, XX	9
Та-Nb (2) Грейзеновые (7):	28 —61—1 04	II, VII, XXVI	26
Мо (2), W (2), Sn (3) Гидротермальные (47): Fe (4), Mo (4), W (2), Cu (4), Pb-Zn (9), Sn (3), Sb (1), As (2), Au (8), B (1), пьезокварц (2), асбест (3), флюорит (3), сер-	34—103— 343	I, II, V, VII, VIII, X, XIV, XV, XIX, XX, XXIII—XXVII	183
ный колчедан (1) Телетермальные (9): Co ₂ (1), Pb-Zn ₂ (2), Sb (2), Au (1),	45 —227—1 142	I, VII, VIII, XXV.	38
флюорит (3) Колчеданные (13): Cu (10), Au (2), серный колче-	85-453-1847	II, III, V, XIV, XXV	61
дан (1) Метаморфогенные (5):	15—46—78	II, VIII, XIX, XXVIII	16
Fe (3), Mn (1), корунд (1) Осадочные (20): Fe (2), Mn (1), Ti (5), Cu (1), B (3), фосфориты (3), бокситы (4),	30 —80— 212	I—V, VII, XIII, XIV, XXIV, XXIV, XXX	99
серный колчедан (1) Коры выветривания (3): Ni-Co (3)	4—20—40 465—475—493	V, XIV г. Саратов, 6 X 1918 г.	14
Метеорит № 428	165—175—193 (см. продолжение)	1, Сарагов, О А 1010 Г.	

Породы и месторождения	Содержание	Регионы	n
Метеорит № 1171	38-42-48	Жовтневский хутор, УССР, 9 X 1938 г.	
Метеорит № 1752	495461	Купатак, РСФСР, 11 VI 1949 г.	
Метеорит № 1836	12—15—19	Елеповка, УССР, 17 X 1951 г.	

II р и м е ч а н и е. В скобках указано либо число геологических периодов от докембрия до современного, либо число месторождений. Регионы: І — Южный Клахстан, ІІ — Центральный, ІІІ — Восточный, ІV — Северный, ∨ — Западный Клаахстан, ∨І — Украина, ∨ІІ — Забайкалье, ∨ІІІ — Якутин, ІХ — Хабаровский край, х — Армения, ХІ — Крым, ХІІ — Приморье, ХІІ — Грузия, ХІV — Урал, ХV — Таджикистан, ХVІ — Прибалтика, ХVІ — Поволжье, ХУІІ — Кавказ, ХІХ — Кирсизия, ХХ — Восточная Сибирь, ХХІ — Кольский полуостов, ХХІ — Краснонрский край, ХХІІ — Узбекистан, ХХІ — Карелия, ХХУ — Волгария, ХХVІ — Чукотка, ХХУІІ — Тува, ХХУІІ — КМА, ХХІХ — Алтай, ХХХ — Коми АССР.

руд различных типов эндогенных месторождений изменяется от 2.5 до 3.5, а для руд осадочных месторождений оно равно 1.4. Для руд магматических, скарновых, телетермальных и колчеданных месторождений характерно бимодальное распределение температур, соответствующих максимальным скоростям возгонки. Максимальные скорости возгонки при $400-700^{\circ}$ могут соответствовать амальгамам различных металлов. На эту форму нахождения ртути в природных условиях обращал внимание В. И. Вернадский (6).

Расчеты показывают, что из горных пород и руд максимальное количество Hg возгоняется в интервале 200—300°, а для руд магматических и колчеданных месторождений—в интервале 300—400° (рис. 2). Из руд пегматитовых, скарновых, гидротермальных, телетермальных и колчеданных месторождений относительно большие количества Н2 возгоняются в интервале температур 400—600° (рис. 2). Повышенные концептрации Hg в рудах и наличие составляющих, которые возгоняются при низких температурах, позволяют ожидать существование аномальных концентраций паров Нд над нертутными рудными месторождениями. Экспериментальные работы, проведенные на Рудном Алтае и в Западном Казахстане (7), подтверждают высказанные соображения. Наличие более широкого термоспектра возгонки и большого числа составляющих Нд в рудах по сравнению с горными породами позволяет использовать эту особенность для расшифровки геохимических аномалий. Некоторое отличие термоспектра возгонки руд различных генетических типов месторождений, возможно, позволит использовать эту особенность в качестве признака, характеризующего условия образования рудных месторождений.

Автор выражает искреннюю благодарность акад. В. И. Смирнову и проф. А. П. Соловову за ценные советы по систематизации материалов исследований.

Институт минералогии, геохимии и кристаллохимии редких элементов Москва

Поступило 24 II 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. И. Степанов, А. А. Рудковский, В. З. Фурсов, Изв. АН КазССР, сер. геол., № 3 (1969). ² А. Хальд, Математическая статистика с техническими приложениями, ИЛ, 1956. ³ К. Доерфель, Статистика в аналитической химии, М., 1969. ⁴ Осаждение из газовой фазы, М., 1970. ⁵ В. З. Фурсов, И. И. Степанов, Изв. АН КазССР, сер. геол., № 2 (1967). ⁶ В. И. Вернадский, Избр. соч., 2, М., 1953. ⁷ В. З. Фурсов, И. И. Степанов, Изв. АН КазССР, сер. геол., № 3 (1968). ⁸ В. З. Фурсов, И. И. Степанов, Разведка и охрана недр, № 10 (1971).