УДК 513.83

MATEMATHKA

д. в. чудновский

ТОПОЛОГИЧЕСКИЕ СВОЙСТВА ПРОИЗВЕДЕНИЙ ДИСКРЕТНЫХ ПРОСТРАНСТВ И ТЕОРИЯ МНОЖЕСТВ

(Представлено академиком В. М. Глушковым 1 XI 1971)

В работе продолжаются исследования топологических свойств тихоновских произведений дискретных пространств типа $X_m \subset N^m$ и $X_m \subset \prod_{\xi < m} X_\xi$ п т. п., начатые в работах (1, 5) и (2, 4, 10). Приводится теоретико-множественная характеристика важного класса M^* (см. (4)) в терминах компактпости инфинитарного языка. Эта характеристика ($M^* = SI$) уточняет результаты (4) о «строгой некомпактности» кардиналов из M^* . Полученные результаты позволяют решить проблему С. Мрувки (1) о существовании кардинала $m < 2^{\omega_0}$, $m \notin M$ и аналогичную проблему из $(^{13})$.

Рассматриваются также вопросы о m-компактности N^m . Дается отрицательный ответ на вопросы П. Эрдеша и А. Хайнала, (ср. (*)). Доказывается (теорема 4), что с теорией множеств ZF + MC совместимо условие

 N_0^{k+} не k_0^{+} -компактно», где k_0 — первый измеримый кардинал.

1. Воспользуемся стандартной терминологией общей топологии и теории множеств из $(^3, ^6, ^8)$. Символы $\alpha, \beta, \gamma, m, n, k$ обозначают кардиналы (т. е. начальные ординалы); ξ, ζ, μ, η, ρ — произвольные ординалы, причем всякий ординал отождествляется с множеством всех меньших. Символом X_{\sharp} обозначим дискретное пространство на ординале ξ . Если X, Y — топологические пространства, то $X \subset Y$ означает, что X гомеоморфно замкнутому подмножеству Ү. Будем здесь рассматривать топологические условия (ср.

$$(^1,^4))$$
 $S_1(m)$: $X_m \subset N^m$ п $S_0(m)$: $X_m \subset \prod_{\xi < m} X_{\xi}$. $S_1(m)$ было введено в

(1), где обозначалось через $m \in M$. Условие $S_{\epsilon}(m)$, обозначенное в (1) через $R\left(m
ight)$, детально рассматривалось в $({}^{\iota})$, где $S_{\mathfrak{s}}(m)$ обозначалось $m \Longleftrightarrow$ $\equiv M^*$. Обозначения M и M^* будут сохранены в данной работе.

Yсловия $S_{\scriptscriptstyle 1}(m)$ и $S_{\scriptscriptstyle 6}(m)$ имеют простые эквиваленты, сформулированные в терминах матриц множеств. По поводу «матричной» формы условия $S_1(m)$ см. (1, 2). Условие $S_6(m)$ рассмотрим более детально.

 Π редложение 1. \mathcal{A} ля любого т условие $S_{\mathfrak{e}}(m)$ эквивалентно сле ∂ у-

ющему: $S_{\epsilon}(m)$: существует семейство $\{A_{\eta}^{(\xi)}: \eta < \xi\}$, $\xi < m$, подмножеств m такое, ито $A_{\eta_1}^{(\xi)} \cap A_{\eta_2}^{(\xi)} = \phi$ при $\xi < m$; $\eta_1, \eta_2 < \xi$ и $\eta_1 \neq \eta_2$; $\bigcup_{n < \xi} A_{\eta}^{(\xi)} = \phi$

= m для любого $\xi < m$ и, наконец, для любой функции $f: m o m, f(\xi) < m$ $<\xi:\xi< m$, существует конечное множество $C\subset m$, удовлетворяющее условию: $\bigcap_{\xi\in C}A_{f(\xi)}$ не более чем одноэлементно.

Замечание 1. Для бесконечных кардиналов т при замене условия $\begin{subarray}{ll} & (\bigcap_{\xi\in C}A_{f(\xi)}) \end{subarray} \begin{subarray}{ll} & (\bigcap_{\xi\in C}A_{f(\xi)}) \end{s$ лучаем условие $S_{\scriptscriptstyle 6}{}''(m)$, эквивалентное $S_{\scriptscriptstyle 6}(m)$. Доказательство этого факта весьма просто, так как $m^{\omega_c} = m$. С помощью замечания (1) и техники (2) получаем следующий результат.

Tеорема 1 (4). Условие $m
otin M^*$ (т. е. $\cein S_6(m)$) для бесконечных m

эквивалентно условию

 $S_{\mathfrak{s}^*}(m)$: для всякой совокупности $\{\mathfrak{R}_{\mathfrak{s}}: \xi \in \Xi\}$ семейств подмножеств m, где $\bigcup \mathfrak{R}_{\mathfrak{s}} = m$, $\Xi = m$ и $\overline{\mathfrak{R}}_{\mathfrak{s}} < m$ для $\mathfrak{s} < m$, существует неглавный ультрафильтр \mathscr{D} на m такой, что для любого $\mathfrak{s} < m$ существует $A_{\mathfrak{s}} \in \mathfrak{R}_{\mathfrak{s}}$ с $A_{\mathfrak{s}} \in \mathscr{D}$.

Замечание 2. В теореме 1 ультрафильтр $\mathcal D$ может быть выбран однородным на m, т. е. $A \in \mathcal D$ влечет A = m. Для этого достаточно к семейству $\{\mathfrak R_\xi : \xi \in \Xi\}$ присоединить семейство $\{\mathfrak R_\xi : \xi < m\}$, где $\mathfrak R_\xi = \{m \setminus \xi, \{\zeta\}\}_{\xi < \xi}$ при $\xi < m$. Тогда, применяя к полученной совокупности теорему 1, получим требуемый ультрафильтр $\mathcal D$ такой, что $m \setminus \xi \in \mathcal D$ при $\xi < m$, т. е. $\mathcal D$ однороден.

При обобщенной континуум-гипотезс (ОКГ) или даже при более слабых предположениях (папример, все слабо недостижимые кардиналы строго недостижимы) $M^* = C_0$. Это вытекает из (3), теорема 4.32. В общем же случае, например, если 2^{ω_0} — «достаточно большой» кардинал, $M^* \neq C_0$ (см. теорему 3). Однако класс M^* имеет естественную характеристику в

терминах строгой некомпактности кардиналов (см. $({}^9, {}^4)$).

Напомним определение инфинитарных языков $L_{\alpha,\beta}$, где α , β —бесконечные кардиналы. Язык $L_{\alpha,\beta}$ является расширением обычного языка первого порядка (*), в которое включены правила, разрешающие конъюнкции и дизъюнкции $<\alpha$ формул и допускающие квантификации V или X по $<\beta$ переменным. (Более подробное описание языка $L_{\alpha,\beta}$ см. в (*, *).) В ряде работ (*, *1*) исследуется возможность обобщеня теоремы компактности Мальцева с обычного языка (L_{ω_0, ω_0}), например, на L_{m, ω_0} . В соответствии с (*) кардинал m называется строго некомпактным ($m \in SI$), если язык L_{m, ω_0} не (m, m)-компактен, m е. если существует множество m аксиом (m е. формул без свободных переменных) языка m изыка m на имеющее модели, хотя каждое m строго некомпактных кардиналов: m (*), стр. 262) из достижимых и строго некомпактных кардиналов: m (*), стр. 262) из достижимых и строго некомпактных кардиналов: m (*), стр. 262) из достижимых и строго некомпактных кардиналов: m (*), стр. 262) из достижимых и строго некомпактных кардиналов: m (*), стр. 262) из достижимых и строго некомпактных кардиналов: m (*), стр. 262

Класс M^* имеет естественную характеристику в терминах $SI: M^* = SI$

(теорема 2). Это дополняет следующий результат С. Мрувки (4):

 Π редложение 2. $M^* \subseteq SI$.

Доказательство предложения 2 очевидно: для этого достаточно записать на языке L_{m, ω_0} условия предложения 1. К полученной аксиоме языка L_{m, ω_0} пеобоходимо добавить следующую систему аксиом: $\bar{c}_0 > \bar{\xi}$ и $\nabla x (x < \bar{\xi} \to V_{\eta < \bar{\xi}} x = \bar{\eta})$ для любого $\xi < m$, где \bar{c}_0 — новая внелогическая константа.

Доказательство $SI \subseteq M^*$ нёсколько более сложно. Заметим, что для любой аксиомы ϕ языка L_{m, ω_0} , сигнатура (т. е. множество внелогических символов) которой — μ , существует новая сигнатура $\mu' \supseteq \mu$, $\mu' < m$, и семейство Ω_{ϕ} множество формул языка первого порядка сигнатуры μ' с одной свободной переменной такие, что $\Omega_{\phi} < m$ и

 (O_{φ}) для всякой модели $\mathfrak A$ сигнатуры $\mu \mathfrak A \models \varphi$ тогда и только тогда, когда существует такая интерпретация символов из $\mu' \setminus \mu$ на $\mathfrak A$, что в полученной модели $\mathfrak A'$ отбрасывается $\Omega_{\varphi}(v_{\vartheta})$, т. е. $\mathfrak A \models \forall x \mid (\&\Delta(x))$ при $\Delta \equiv \Omega_{\varpi}$.

Доказательство этого можно найти в (9), § 5. Используемые простые сведения по теории моделей (теорема Лося, элементарные подсистемы и т. п.) можно найти в (8 , 9).

 $\acute{\mathrm{T}}$ еорема 2. $M^* \stackrel{\smile}{=} \acute{S}I$.

Для $m \notin M^*$ (m, m)-компактность L_{m, ω_0} исследуется так. Пусть семейства Ω_{ξ} множеств формул сингнатуры μ_0 такие, что \mathfrak{A}_{ξ} отбрасывает Ω_{ξ} при $\zeta < \xi$. В силу (O_{ϕ}) достаточно показать, что существует модель \mathfrak{A} , отбрасывающая $\Omega_{\xi}(v_0): \zeta < m$.

Построим ${\mathfrak A}$ методом сколемовского произведения моделей ${\mathfrak A}_{{\mathfrak k}}: {\mathfrak k} < m$ по некоторому ультрафильтру на m (ср. (8), стр. 108). Пусть \mathfrak{A}_{ξ} $=\langle A_{\xi},\ldots \rangle: \xi < m, \ A = \prod_{\xi < m} A_{\xi}$ — произведение основных множеств \mathfrak{A}_{ξ} .

Выберем семейство $F \subseteq A$, удовлетворяющее условию: $\overline{F} \leqslant m$ и 1) Если $\Phi(v_0,\ldots,v_n)$ — формула сигнатуры μ_0 со свободными переменными v_0, \ldots, v_n и f_1, \ldots, f_n — функции в F, тогда существует функция $g \in F$ такая, что $\mathfrak{A}_{\xi} \models (\exists v_0) \Phi(v_0, f_1(\xi), \ldots, f_n(\xi)) \to \Phi(g(\xi), f_1(\xi), \ldots, f_n(\xi))$ для $\xi < m$.

Пусть $\mathfrak{A}_{\mathscr{D}} = \prod_{\xi < m} \mathfrak{A}_{\xi} / \mathscr{D}$ — ультрапроизведение \mathfrak{A}_{ξ} по ультрафильтру \mathscr{D} . F — множество, удовлетворяющее (I) и $\mathfrak{A}=\mathfrak{A}_{\varnothing}$ |F — модель, основное множество которой — совокупность F / \mathcal{D} .

Используя обычную теорему Лося для ультрапроизведения (12), по-

(L) если $\Phi(v_1,\ldots,v_n)$ — формула языка первого порядка сигнатуры μ_0 и $a_1 = f_1 / \mathcal{D}, \ldots, a_n = f_n / \mathcal{D} -$ элементы $\mathfrak{A}, \text{ то } \mathfrak{A} \models \Phi(a_1, \ldots, a_n) \rightleftharpoons \{\xi < m : \mathfrak{A}_{\xi} \models \Phi(f_1, (\xi), \ldots, f_n(\xi))\} \in \mathcal{D}.$ Пусть $\Omega_{\xi} = \{\Delta_{\xi}^{(\rho)} : \rho < m\}$. Подагаем $\Xi = F \times m \times m$ и $\langle f, \zeta, \rho \rangle \in \Xi$.

Для $\varphi(v_0) \in \Delta_{\xi}^{(e)}$ пусть $B_{\langle f, \, \zeta, \, e \rangle}(\varphi) = \{\xi < [m: \mathfrak{A}_{\xi}] = \neg \varphi(\xi)\}\}$ и $B_{\langle f, \, \zeta, \, e \rangle}^* = \{\xi < m: \mathfrak{A}_{\xi}] = \varphi(f(\xi))$ для всякого $\varphi \in \Delta_{\xi}^{(e)}$. Определяем $\mathfrak{R} \in \mathcal{R}$ $=\{B_{\langle j,\, \zeta,\,
ho
angle}(\phi),\, B^*_{\langle j,\, \zeta,\,
ho
angle}\}_{\phi\in\Delta^{(
ho)}_{\xi}}$. Поскольку $\overline{\Delta^{(
ho)}_{\xi}}< m$ при $\xi< m$, то и

 $\overline{\Re\langle f,\xi,
ho
angle} < m$ при $\langle f,\xi,
ho
angle \in \Xi$. Ввиду $S_6{}^*(m)$ существует ультрафильтр \mathscr{D} такой, что для любого $f \in F$ и ξ , $\rho < m$ существует $B \in \Re\langle f, \xi, \rho \rangle$ с $B \in \mathcal{D}$ и по замечанию 2 \mathcal{D} может быть выбран однородным на m; значит, при $\langle f, \zeta, \rho \rangle \in \Xi$ существует $\varphi \in \Delta_{\xi}^{(\rho)}$ с $B_{\langle f, \xi, \rho \rangle}(\varphi) \in \mathscr{D}$. Поэтому \mathfrak{A} отбрасывает $\Omega_{\xi}: \xi < m$.

Теорема 2 может быть применена для более точной характеристики класса M (ср. $\binom{2}{2}$). Результат, аналогичной теореме 2, имеет место и для

2. Остановимся на проблеме (1): будет ли $[\omega_0, 2^{\omega_0}] \subseteq M$? Всегда $2^{\omega_0} \subseteq$ E M и вообще, когда 2^{ω_0} не слишком велик (т. е. первый слабо недостижимый кардинал), $[\omega_0, 2^{\omega_0}] \subseteq M$. Однако в общем случае (как увидим ниже) может существовать кардинал $m < 2^{\omega_0}, \ m \notin M^*$ (и подавно, $m \in M \subset$ $\subset M^*$). Этот результат связан с так называемыми Π_1^4 -неразличимыми кардиналами. Под $\Pi_1^{\mathbf{1}}$ -формулой понимаем формулу вида $\forall X_1 \cdots \forall X_n \varphi(X_1, \ldots$ \dots, X_n), где $\forall X_i$ — универсальные кванторы по предикатным переменным, $\varphi(X_1)$ — формула языка первого порядка и X_1, \ldots, X_n в φ -предикатные символы. Кардинал k Π_1 -неразличим в смысле $\binom{7}{2}$, $\binom{11}{2}$, если для любых предикатов R_1, \ldots, R_n на k и Π_1 -аксиомы $\varphi(<, R_1, \ldots, R_n)$ из $\langle k \rangle \leqslant R_1$ $R_1, \ldots, R_n
angle \models \phi$ вытекает, что для пекоторого $\lambda < k$ $\langle \lambda; \leqslant R_1 \uparrow \lambda, \ldots \rangle$ $\ldots, R_n \upharpoonright \lambda \rangle \models \varphi.$

Известен (см. (9), стр. 261) классический результат, что для строго педостижимых кардиналов $m>\omega_0$ Π_1 -неразличимость эквивалентна компактности (т. е. $m \notin C_0$). Однако К. Кунен (7) показал, что может существовать Π_1^{-1} -неразличимый кардинал $< 2^{\omega_0}$.

Теорема 3. Из непротиворечивости ZF + «существует компактный $(\not \in C_0)$ кар ∂ инал $>\omega_0$ » вытекает совместимость «существует $m<2^{\omega_0}$, $m \not \subset M^*$ », c ZF.

Теорема 3, в силу результатов (11), показывает, что теорема 3 из (10) классы M^{∞} ... $(\overline{AC}) \setminus \overline{AC}$ и может быть значительно обобщена на M^{∞} ... $(AC) \setminus AC$.

К свойству $S_1(m)$ тесно примыкает « N^m не m-компактно». Вопрос о совпадении этих свойств был поставлен в (4). С помощью результата (12)

локажем, что эти свойства, вообще говоря, не совпадают. Имеет место ($MC \rightleftharpoons «существует измеримый (³) кардинал»).$

Теорема 4. Если теория множеств ZF+MC совместима, то теория множеств ZF+MC « $N^{k_0^+}$ не k_0^+ -компактно», где k_0 -первый измеримый

кардинал, совместима.

Теорема 4 доказывается с помощью того (ср. (3)), что из k_0 ⁺-компактности N^{k_0+} при $2^{k_0} = k_0$ ⁺ вытекает, что всякий k_0 -полный фильтр над k_0 расширяется до k_0 -полного ультрафильтра. Отметим, что уже в модели $L[\mathcal{U}]$, построенной в (12), $N^{k_0^+}$ не k_0 ⁺-компактно.

построенной в (12), N ° не κ_6 т-ко

Институт математики Академии паук УССР Киев Поступило 3 IX 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ S. Mrowka, Bull. Acad. Polon. Sci., 14, 597 (1968). ² Д. В. Чудновский, Преприит ИМ-70-4, Инст. матем. АН УССР, Киев, 1970. ³ Н. Кеіsler, А. Тагski, Fund. Math., 53, 225 (1964). ⁴ S. Mrowka, Proc. Am. Math. Soc., 25, 705 (1970). ⁵ S. Mrowka, Bull. Acad. Polon. Sci., 17, 411 (1969). ⁶ К. Куратовский, Топология, 1, М., 1966. ⁷ К. Кипеп, Proc. Symp. Pure Math., 13, 199 (1970). ⁸ C. C. Chang, Sets, Models and Recursion Theory, Amsterdam, 1967, p. 85. ⁹ M. Dickmann, Lecture Notes Series, № 20, Aarhus, 1970. ¹⁰ A. Haynal, Bull. Acad. Polon. Sci., 17, 683 (1969). ¹¹ A. Levy, Proc. Symp. Pure Math., 13 (1970). ¹² К. Кипеп, Ann. Math. Log., 1, № 2, 179 (1970). ¹³ Х. Кейслер, Матем. логика и ее примен., М., 1965.