УДК 591.481.1:591.543

ФИЗИОЛОГИЯ

Ф. З. МЕЕРСОН, Д. КРАНЦ, Т. С. САДЫРАЛИЕВ, Р. Р. АЙНОКЕНОВА

ДИНАМИКА СИНТЕЗА БЕЛКА В НЕЙРОНАХ И ГЛИИ ГОЛОВНОГО МОЗГА ПРИ АДАПТАЦИИ К ВЫСОТНОЙ ГИПОКСИИ

(Представлено академиком В. В. Париным 13 VII 1971)

Исследованиями установлено, что в процессе адаптации к прерывистому действию высотной гипоксии в условиях барокамеры в коре головного мозга и его нижележащих отделах развивается активация синтеза белка и увеличение концентрации РНК (¹,²). Эта активация сопровождается ускорением выработки и увеличением степени сохранения условных рефлексов, увеличением резистентности памяти к электрошоку (³), а также увеличением резистентности измяти к электрошоку (³), а также увеличением резистентности животных к звуковому раздражителю, вызывающему судорожные припадки (¹). Для правильной оценки этих фактов необходимо выяснить, в каких клеточных структурах головного мозга реализуется описанная выше активация синтеза, так как это позволит приблизиться к пониманию ее конкретной роли в тех изменениях функции мозга, которые реально наблюдаются при адаптации к высотной гипоксии.

В соответствии с этим в данной работе методом авторадиографии изучалась динамика синтеза белка в гигантских пирамидных нейронах и глиальных клетках коры головного мозга, а также в нейронах и глиальных клетках супраоптического ядра гипоталамуса при адаптации к прерывистой и непрерывной гипоксии.

Опыты производились на крысах-самцах линии Вистар весом 140—160 г. Адаптация к прерывистому действию высотной гипоксии осуществлялась путем помещения животных в барокамеру ежедневно на 6 час. при «высоте» 7 км в течение 40 суток. Адаптация к непрерывному действию высокогорной гипоксии проводилась путем доставки подопытных животных из Москвы на научно-исследовательскую станцию Киргизского государственного медицинского института, расположенную в горах Тянь-Шаня в районе Туя-Ашу на высоте 3200 м.

Через 10; 20 и 40 суток после начала адаптации к прерывистому действию гипоксии и через 3; 10; 20 и 40 суток после подъема в горы животным вводили меченую аминокислоту Н³-тирозин в дозе 300 µC на 100 г веса, а спустя 4 часа забивали их методом декапитации. При адаптации к прерывистому действию гипоксии в каждый из указанных сроков брали 3 адаптированных и 2 контрольных крысы. При адаптации к высокогорью в каждый из сроков также брали трех находившихся на высоте животных; контрольная группа из трех животных была взята один раз перед подъемом в горы. З крысы после 40 суток адаптации к высокогорью были доставлены в Москву и забиты через 6 суток после прекращения адаптации. При авторадиографическом исследовании подсчитывали количество зерен серебра на единицу площади ядра и цитоплазмы нейронов и ядер глиальных клеток, определялся также процент меченых глиальных ядер по отношению к общему их количеству. Размеры клеток рассчитывали по формуле $S = \pi (D_{\text{max}})$ $\cdot D_{\min}$) /4, где S — площадь структуры, D_{\max} и D_{\min} — соответственно максимальный и минимальный диаметры клеток, $\pi = 3.14$.

Таблица Динамика интенсивности включения Н³-тирозина в гигантские ипрамидные нейропы и ядра глиальных клеток

				адаптац	адаптации к прерывистому пействию высожной чиножения	тегетительный попролький мура Глиальных клеток коры головного мозга при 10МV лействию высодной типоления	ы и ядра глиал твой витовени	BHELY KILETOR	коры головного	мозга при
Phyth					Пирамидиые нейроны	Heli	THOUSE THE TOTAL		Kuomeria muun	and the second s
HEI		Число	число						Telling land	
живот-	Вариант	живот-		величина нейрона, µ²	величина ядра нейрона, µ²	число зерен серебра в эмуль- сии над пейро- ном (на 100 µ²)	число зерен серебра в эмуль- сии над ндром нейрона (на 100 м²)	число мече- ных глиаль- ных клегок, % к общему	средние размеры ядер глиальных кледон на	число зерен серебра над ядрами глиальных кле-
								числу	1	(all one way) way
-	Конгроль	9	1431	$484\pm16,08$	384+8.24	2.6-0.0%	1 71 ± 0 02	6 9	70 1 0 67	2 1 10 40
II	Гипоксия	c	887	(100%)	(100%)	(100%)	(100%)	٥,٠	(100%)	0,0∏0,10 (4000k)
ļ	10 дней)	400	999 + 33,06	443+28,67	$3,7\pm0,17$	2,5+0,17	20,8	41+3.7	6.5+0.29
III	Гипоксия	<u>ლ</u>	300	67 517 809	(115%)	(142%)	(147%)		(28,6%)	(185,9%)
111	20 дпей			(124%)	40/H10,03	4,3+0,11	2,9+0,17	32,6	59+5,4	5,6+0,23
<u></u>	I ипоксия 70 пной	ಣ	275	645±17,4	436+9.25	(100,3%) 5 0+0 46	$^{(1/0,1\%)}_{3,3\pm0,70}$	6 13	(84,4%)	$(160\%) \\ (110\%) \\ ($
Toom	ианн от	_		(133,3%)	$(11\overline{3},6\%)$	(192,1%)	(181.2%)	7,10	(80.0%)	(145.9%)
pası	достоверность различий (P)			Р _{І-ІІ} недостаточ-	$P_{\mathrm{I-II}}$ недостаточ-	$P_{\rm I-II} < 0.001$	$P_{\rm I-II} < 0.01$		$P_{\rm r} = (1.5, 0.001)$	$P_{\rm r} = \frac{1}{12} \frac{1}{12} \frac{1}{12}$
		_		ная	ная	•			, II-I	, 11-1
				$F_{\mathrm{I-III}}$ $<$ 0,01	$P_{ m I-III}$ недостаточ- $ P_{ m I-III} < 0,001 $ $ P_{ m I-III} < 0,001 $	$P_{ m I-III}\!<\!0,001$	$P_{ m I-III} < 0,001$	ı	Р _{1—Ш} педоста-	$P_{ m I-III}$ педоста-
				$P_{\rm I-IV} < 0.01$	$P_{\rm I-IV} < 0.01$	$\left P_{\rm L-TV} < 0.001 \right P_{\rm L-TV} < 0.01$	$P_{\rm r} = 1000$	İ	точная $P_{r} = 100000000000000000000000000000000000$	$P_{\tau} = \frac{1}{2} (1.05)$
				•			1)), () / / /

Результаты подсчета метки и цитометрических исследований оказались сходными для прерывистой и непрерывной гипоксии.

Из табл. 1 следует, что процессе адаптации к прерывистому действию высотной гипоксии в гипирамидных гантских клетках двигательной зоны коры головного мозга постепенно происходило увеличение интенсивности включения меченой аминокислоты на единицу площади клетки: через 10 суток после начала адаптации включение было vвеличено на 40%, через 20 суток — на 65%, через 40 суток — более чем на 90% по сравнению с контрольным уровнем. Одновременио наблюдалось менее выраженное, но вполне достоверное увеличение размеров клеток. Через 20 суток после начала адаптации этот показатель был увеличен на 25%, а через 40 суток — более чем на 30%. Динамика включения аминокислоты в ядра гигантских пирамидных клеток, как следует из табл. 1, была в основном такой же, как для клетки в целом, а размеры ядер увеличивались в значительно меньшей степени, чем размеры клеток.

Из табл. 1 следует далее, что в процессе адаптации обычно низкий индекс мечения глиальных клеток возрастает во много раз; в то время как в контроле метку включает лишь 6,3% глиальных клеток, к 40 суткам адаптации мечеными оказываются 61% клеток. Одновременно наблюдаются большие изменения интенсивности мечения и размеров ядер этих клеток. Интенсивность синтеза белка в глиальных клетках, в отличие от соседних с ними пирамидных нейронов, возрастает не постепенно, а весьма круто: через 10 дней после начала адаптации она увеличена на 90% от исходного уровня. В дальнейшем интенсивность включения несколько снижается: через 20 суток она увеличена на 60%, а через 40 суток — на 45% от контроля. Размеры ядер при адаптации к высотной гипоксии в противоположность

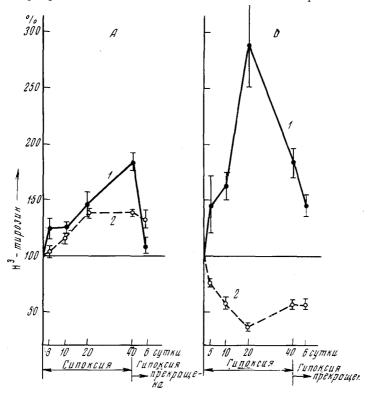


Рис. 1. A — динамика интенсивности включения H^3 -тирозина в гигантские пирамидные клетки коры (1) и их размеры (2) при адаптации к непрерывной высокогорной гипоксии; E — динамика интенсивности включения H^3 -тирозина в ядра глиальных клеток коры (1) и размеры этих ядер (2) у тех же животных

ядрам нейронов не увеличиваются, а быстро уменьшаются: через 10 суток этот показатель уменьшен на 40%, а через 20 и 40 суток — на 15—20%. Поскольку интенсивность включения меченой аминокислоты характеризует в наших опытах, так же как и в других исследованиях по авторадиографии, интенсивность синтеза белка (5-7), результат, полученный при исследовании коры головного мозга, может быть резюмирован следующим образом: в процессе адаптации к прерывистому действию высотной гипоксии в пирамидных нейронах коры наблюдается постепенная, а в соседних глиальных клетках — быстро нарастающая активация синтеза белка. Эта активация приводит к значительному увеличению размеров пирамидных нейронов и некоторому увеличению нейронов при одновременном существенном уменьшении размеров ядер глиальных клеток, которое быстро развивается в начале адаптации.

Аналогичные, но менее выраженные изменения наблюдались в супраоптическом ядре гипоталамуса при адаптации к высотной гипоксии у этих же животных (рис. 1, 2).

Кривые на рис. 1, 2 свидетельствуют о том, что как в коре головного мозга, так и в супраоптическом ядре гипоталамуса адаптация к непрерывной гипоксии сопровождается принципиально теми же изменениями интенсивности синтеза белка, что и адаптация к прерывистой гипоксии.

В обоих случаях наблюдается постепенно прогрессирующая активация синтеза белка в корковых и гипоталамических нейронах при одновременном увеличении размеров этих клеток. В глиальных клетках активация синтеза нарастает более круто, является наибольшей в начальном периоде адаптации и сопровождается не увеличением, а, напротив, резким уменьшением размеров клеточных ядер. Так же как и при адаптации к прерывистой гипоксии, активация синтеза и увеличение размеров нейронов больше выражены для коры, чем для гипоталамуса.

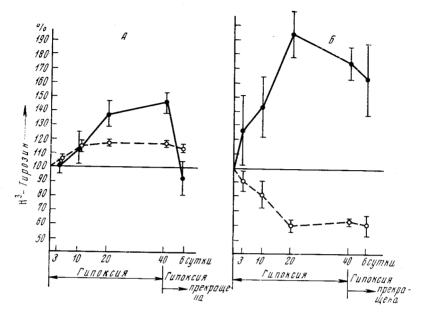


Рис. 2. A — динамика интенсивности включения H^3 -тирозина в нейроны супраоптического ядра гипоталамуса (1) и их размеры (2) при адаптации к непрерывной высокогорной гипоксии; B — динамика интенсивности включения H^3 -тирозина в ядра глиальных клеток (1) и размеры этих ядер (2) у тех же животных

При объяснении активации синтеза в головном мозгу следует иметь в виду, что совместимый с жизнью дефицит макроэргов, вызываемый в клетках гипоксией (8), а также интенсивной нагрузкой (9) и холодом (10), всегда влечет за собой более или менее выраженную активацию синтеза нуклеиновых кислот и белка. На этом основании мы считали возможным рассматривать дефицит макроэргов в клетке как сигнал, активирующий генетический аппарат клетки. Вероятное биологическое значение активации состоит в том, что она проявляется первоочередным или даже избирательным увеличением биогенеза и адаптационным увеличением мощности системы митохондрий (11).

Институт нормальной и патологической физиологии Академии медицинских наук СССР Москва Поступило 13 VII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ф. З. Меерсон, М. Я. Майзелис и др., ДАН, 187, № 3, 227 (1969). ² Ф. З. Меерсон, М. Я. Майзелис, В. Б. Малкин, Изв. АН СССР, № 6, 849 (1969). ³ Ф. З. Меерсон, Р. И. Кругликов и др., Космич. биол. и мед., 2, 56 (1970). ⁴ М. Я. Майзелис, Ф. З. Меерсон и др., Бюлл. эксп. биол. и мед., № 1, 28 (1970). ⁵ Н. Д. Грачева, Авторадиография синтеза нуклеиновых кислот и белков в нервной системе, Л., 1968. ⁶ В. Droz, H. I. Warshawsky, J. Histochem. cytochem., 11, 426 (1963). ⁷ В. Droz, The Use of Radioautography in Investigating Protein Synthesis, 4, N. Y., 1965, p. 159. ⁸ Z. Gottesfeld, T. A. Miller, Am. J. Physiol., 216, 1374 (1969). ⁹ J. Karlsson, B. Saltin, J. Appl. Physiol., 29, 5, 598 (1970). ¹⁰ В. П. Скулачев, С. П. Маслов, Биохимия, 28, 1, 70 (1963). ¹¹ М. Rabinowitz, R. Zak et al., In: Abstract III Annual Meeting of the Intern. Study Group for Research in Cardiac Metabolism, June 29 — July 1, Vermont, 1970.