УДК 550.89

ПЕТРОГРАФИЯ

В. Н. АНФИЛОГОВ, В. А. АБРАМОВ, В. И. КОВАЛЕНКО, В. Я. ОГОРОДОВА

ФАЗОВЫЕ ОТНОШЕНИЯ В АГПАИТОВОЙ ОБЛАСТИ СИСТЕМЫ Na²O — K²O — Al²O³ — SiO² — H²O ПРИ ДАВЛЕНИИ 1000 кг/см²

(Представлено академиком Д. С. Коржинским 19 IV 1971)

Особенности фазовых отношений в агпаитовой области системы $Na_2O - K_2O - Al_2O_3 - SiO_2 - H_2O$ имеют большое значение для решения вопросов генезиса агнаитовых редкометальных гранитов, пегматитов, нефелиновых сиенитов и других щелочных пород. В связи с этим объектом наших исследований являлась часть системы от состава, близкого к тройному минимуму в системе NaAlSi₃O₈ - KAlSi₃O₈ - SiO₂ (¹), до составов, зна-

Рис. 1. Фазовые отношения в системе $Na_2O - K_2O - Al_2O_3 - SiO_2 - H_2O$ (разрез гранит - $Na_2SiO_3 - H_2O$ ири 1000 кГ/см²). I - IV - помера полей. I - KB + A6 ++ $MK + \Phi$; $2 - KB + A6 + MK + p_1 + \Phi$; $3 - KB + A6 + MK + p_2 + p_1 + \Phi$; 4 - A6 ++ $MK + p_1 + \Phi$; $5 - A6 + p_1 + \Phi$; 4 - A6 ++ $MK + p_1 + \Phi$; $5 - A6 + p_1 + p_2 + \Phi$; 6 $p_1 + p_2 + \Phi$; 7 - пачало плавления гранита с чистой водой чительно обогашенных Na₂O. В качестве шихты брали природный аляскитовый гранит (²), к которому добавляли раствор Na₂SiO₃ с начальными конпентрациями 1: 2; 3; 5; 8 и 11 вес. %. Опыты вели в запаянных золотых ампулах на **установке с внешней поддержкой** давления. Отношение веса шихты к весу раствора во всех опытах было равным 1:10. Вес шихты в зависимости от коэффициента заполнения ампул менялся от 200 до 400 мг. Температуру в процессе опытов поддерживали с точностью $\pm 5^{\circ}$, давление 1000 ± 15 к Γ /см². После опыта реактор закаливали в воде. Продолжительность опытов, установленная по кинетическим исследованиям, составляла 7 суток (²). Стабильность фазовых

отношений проверяли подходом к исследуемой точке «снизу» и «сверху». Диагностику фаз производили рептгенографическим методом на дифрактометре ДРОН-1, а также оптическими методами. Растворы, гомогенные стекла и тяжелую фазу раздельно анализировали методами стандартного химического силикатного анализа. Содержание воды в стекле и тяжелой фазе определяли по величине потерь при прокаливании.

Результаты опытов в виде фазовой диаграммы в координатах температура — равновесная концентрация Na₂O в растворе (флюиде) представлена на рис. 1. Четыре поля диаграммы характеризуются следующими фазами: $I - \kappa$ варц (Кв) + альбит (Аб) + микроклин (Мк) + флюид (Ф); II -Аб + Мк + Ф + расплав (р₁); III - Аб + Ф + р₁ + тяжелая жидкая фаза (р₂); $IV - \Phi + p_1 + p_2$. В поле III в некоторых точках сохраняются редкие зерна микроклипа. Поэтому граница между полями II и III показана условно и проведена пунктиром.

Необходимо отметить, что область существования двух полевых шпатов. показанная на рис. 1, поднимается выше кривой субсолидуса, предложенной Орвилем (³). Возможно, это связано с тем, что в наших опытах не достигнуто твердофазное равновесие (это, впрочем, с равным основанием можно сказать относительно опытов Орвиля (³)). Поэтому вопрос о положении максимума субсолидуса щелочных полевых шпатов в рассматриваемой системе пока следует считать открытым.

В поле IV показаны изоконцентраты воды в фазах р₁ и р₂. Цифрами указаны их значения (вес. %).

Не останавливаясь на свойствах кварца, альбита и микроклина, которые близки к приводимым в справочниках, опишем подробнее особенности жидких фаз. Расплав (p₁) после закалки представляет собой прозрачное гомогенное стекло с показателем преломления от 1,4870 до 1,5230, возра-

стающим с ростом концентрации Na_2O во флюнде. Содержание воды в расплаве меняется от 9,59 до 20,1 вес. % (табл. 1) и увеличивается с ростом содержания Na_2O во флюиде. В области содержаний Na_2O во флюиде < 1 вес. % содержание воды в расплаве не зависит от температуры. При больших концентрациях Na_2O содержание воды с повышением температуры несколько уменьшается. При наиболее низких содержаниях Na_2O во флюиде при 700° концентрации щелочей, алюминия и кремния в расплаве приближаются к их значениям в аляскитовых гранитах (см. табл. 1).

Фаза р₂ по свойствам близка к «тяжелой фазе», описанной в литературе (⁴, ⁵). Для того чтобы проверить, стабильна ли эта фаза в изучаемых условиях, были проведены специальные опыты. В ос-

Рис. 2. Распределение фаз в опыте для определения стабильности тяжелой фазы. p_1 — расплав, p_2 — тяжелая фаза, s — продукты закалки

новной ампуле подвешивалась ампула меньшего диаметра с перфорпрованными стенками для захвата продуктов закалки (рис. 2). В двух опытах шихта помещалась на дно большой ампулы, причем в одном из них в дне перфорированной ампулы имелось отверстие, через которое тяжелая фаза могла стекать в большую ампулу при условии, если она возникает во всем объеме раствора. В третьем опыте шихта помещалась на дно перфорированной ампулы. Распределение продуктов в этих трех опытах показало, что фаза p₂ образуется только в контакте с шихтой, а к продуктам закалки относится белый пемзовидный материал, найденный во всех опытах и в перфорированной, и в большой ампулах (рис. 2). Поэтому пемзовидный материал после опыта отделяли и возвращали в раствор для химического анализа.

После закалки тяжелая фаза представляет собой гель с содержанием воды от 28,44 до 69,15 вес.% (см. табл. 1). Содержание воды в ней уменьшается с увеличением температуры и уменьшением Na₂O во флюиде. Сосуществующие жидкости p₁ и p₂ наиболее резко отличаются только по содержанию воды. Соотношения кремнезема, глинозема и щелочей колеблются в них в довольно узких пределах (рис. 3). В области низких содержаний Na₂O во флюиде при повышении температуры составы и свойства расплава и тяжелой фазы сближаются. Весьма вероятно, что в поле *II* (рис. 1) понижение содержания Na₂O приводит к исчезновению эффекта расслоения. Повышение концентрации Na₂O приводит к сближению составов фаз p₂ и Ф так, что в области еще больших концентраций Na₂O возможен непрерывный переход p₂ во флюид.

Флюид представляет собой водный раствор силиката натрия. При низких концентрациях Na_2O он, практически, содержит только Na_2O и SiO_2 в соотношении, близком к $Na_2Si_2O_5$. С повышением содержания Na_2O это соотношение смещается в сторону Na_2SiO_3 и флюид обогащается калием и глиноземом (см. табл. 1).

Установленные фазовые отношения показывают, что при высоких коэффициентах агнаитности в системе начало плавления гранита наблюдается при значительно более низких температурах, чем для системы гранит — H₂O. В этих условиях из расплава одновременно могут кристаллизоваться 12 дан. т. 204, № 4 945

Таблица 1

Составы сосуществующих жидких и флюндной фаз (%)

.

<i>Т</i> , °С	Содержание Na ₂ SiO ₃ , вес. % в исходном растворе	Раствор (Ф)					Тяжелан фаза (р2)					Расплав (р1)				
		Na ₂ O	K₂O	Al ₂ O ₃	SiO ₂	Н ₂ О (11.п.11.)	Na ₂ O	K ₂ O	$A _2O_3$	SiO_2	Н₂О (ш.п.п.)	Na ₁ O	K ₂ O	Al ₂ O ₃	SiO_2	Н2О (п.п.и.)
500	1 2 3 5 8 11	$\begin{array}{c} 0,27\\ 0,34\\ 0,35\\ 0,72\\ 1,47\\ 1,54 \end{array}$	$\begin{array}{c} 0,04\\ 0,08\\ 0,08\\ 0,08\\ 0,08\\ 0,19\\ 0,19\\ 0,19\\ \end{array}$	$\begin{array}{c} 0,047\\ 0,071\\ 0,077\\ 0,220\\ 0,440\\ 0,530\end{array}$	$\begin{vmatrix} 1,11\\ 1,35\\ 1,31\\ 2,42\\ 2,35\\ 2,14 \end{vmatrix}$	98,53 98,16 98,18 96,56 95,85 95,60	5,49 5,84 7,07	0,70 0,78 0,87	$2,02 \\ 3,07 \\ 2,73$	27,46 25,00 26,22	62,28 64,63 64,76	18,85 20,56 27,55	2,76 2,32 2,27	8,67 4,94 4,09	55,05 50,98 45,42	9,59 14,25 20,01
600	$ \begin{array}{c} 1 \\ 2 \\ $	$0,08 \\ 0,12 \\ 0,27 \\ 0,51 \\ 1,46 \\ 2,68$	$\begin{array}{c} 0,02\\ 0,06\\ 0,07\\ 0,07\\ 0,16\\ 0,21 \end{array}$	$\begin{array}{c} 0,03\\ 0,06\\ 0,07\\ 0,07\\ 0,12\\ 0,40 \end{array}$	$0,18 \\ 0,25 \\ 0,61 \\ 1,13 \\ 4,05 \\ 5,94$	$99,69 \\99,51 \\98,98 \\98,22 \\94,21 \\90,77$	$12,23 \\ 7,40 \\ 7,63$	$2,11 \\ 1,01 \\ .0,60$	$4,95 \\ 3,84 \\ 2,70$	$40,06 \\ 21,85 \\ 20,10$	$39,36 \\ 65,91 \\ 67,84$	$18,35 \\ 22,39 \\ 25,15$	2,51 2,28 2,25	$7,82 \\ 5,78 \\ 4,90$	$57,50 \\ 52,90 \\ 50,10$	10,46 13,10 13,90
700	0,5 1 2 3 5 8 11	$ \begin{array}{c} 0,02\\ 0,02\\ 0,07\\ 0,10\\ 0,22\\ 0,67\\ 1,04\\ \end{array} $	$\begin{array}{c} 0,012\\ 0,012\\ 0,026\\ 0,021\\ 0,042\\ 0,065\\\end{array}$	$\begin{array}{c} 0,61\\ 0,73\\ 0,74\\ 0,72\\ 0,71\\ 1,82\\ 1,93 \end{array}$	$\begin{array}{c} 0, 19 \\ 0, 22 \\ 0, 24 \\ 0, 30 \\ 0, 36 \\ 0, 69 \\ 0, 93 \end{array}$	99,17 99,02 98,93 98,86 98,67 96,76	3,26 10,02 7,69 6,54	$ \begin{array}{c} 0,46\\1,81\\1,04\\0,54\end{array} $	7,22 5,56 4,01 2,16	$62,00 \\ 43,80 \\ 29,41 \\ 17,61$	28,44 35,97 55,71 69,15	$10,98 \\ 14,15 \\ 17,66 \\ 20,27$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$8,56 \\ 6,83 \\ 6,27 \\ 5,25$	$63,87 \\ 62,53 \\ 59,83 \\ 56,32$	$egin{array}{c} 8,46 \\ 10,46 \\ 11,39 \\ 12,68 \end{array}$

два щелочных полевых шпата, парагенезис которых характерен для редкометальных щелочных гранитоидов. Понятно, что экспериментально изученные соотношения фаз, особенно при высоких концентрациях Na₂O в исходном растворе, если и могут реализоваться в природе, то только в наиболее поздних остаточных порциях пегматитовых щелочногранитных магм. Однако, судя по составам более широко распространенных ще-

Рис. 3. Составы расплава, тяжелой фазы и флюнда при 500; 600 и 700°. *I* — область составов флюида, *II* — тяжелой фазы, *III* — расплава. Заштрихованный участок отвечает пзученным составам системы. Коннодами сосуществующих жидких и флюидной фаз при 500° и 1,5 вес.% Na₂O в растворе

лочных грапитов, натровых риолитов и щелочногранитных пегматитов, концентрации Na₂O до 0.3 вес. % во флюиде при их формировании кажутся правдоподобными. При понижении температуры в этой области может наступить расслоепие гранитного расплава. Значение такого расслоения в природе нока оценить трудно, так как составы сосуществующих жидких фаз в опытах отличаются главным образом по содержаниям воды. Не ясно, как распределяется между ними такой существенный компонент природных щелочных гранитов, как железо, а также многие редкие элементы (цирконий, редкие земли, ниобий и т. п.). От характера их распределения будет зависеть, окажутся ли сходными по составу породы при раздельной кристаллизации этих жидких фаз или пет. Подчеркнем также, что одним из условий ликвации в рассматриваемых магмах, очевилно. должен быть избыток воды. Поэтому в эффузивных аналогах щелочных гранитов, кристаллизующихся, по-видимому, из относительно сухих магм, этот процесс менее вероятен, чем для щелочных пегматитов или редкометальных гранитов. В целом же кристаллизация и эволюция расплава в области концентраций Na₂O во флюиде 0,1-0,3 вес. % вполне соответствует эволюции природных парагенезисов щелочных гранитоидов.

Авторы пользуются случаем выразить благодарность В. А. Жарикову и И. П. Иванову за ценные замечания, сделанные при ознакомлении с рукописью работы.

Институт геохимии Поступило Сибирского отделения Академии наук СССР 13 IV 1971 Иркутск

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ О. F. Tuttle, N. L. Bowen, Geol. Soc. Am. Mem., 74 (1958). ² В. А. Абрамов, В. Н. Анфилогов и др., Тр. VIII Всесоюзн. совещ. по экспериментальной и технической минералогии и петрографии, «Наука», М., 1971. ³ Ph. M. Orville, Am. J. Sci., 261, № 3 (1963). ⁴ В. П. Бутузов, Л. В. Брятов, Кристаллография, 2, № 5 (1957). ⁵ И. П. Иванов, В кн.: Экспериментальные исследования в области глубинных процессов, Изд. АН СССР, 1962.

12* 947