УДК 54-165+541.123+546.289

ХИМИЯ

Р. Г. ГРЕБЕНЩИКОВ, В. И. ШИТОВА

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Ca₂GeO₄ – Ba₂GeO₄

(Представлено академиком А. В. Новоселовой 12 XI 1971)

Силикаты кальция занимают исключительное положение среди прочих кремнекислородных соединений. В частности, двухкальциевый силикат Ca_2SiO_4 является одной из основных минеральных фаз цементного клинкера, металлургических шлаков, используется в люминофорной промышленности, находит применение и в других областях техники. Как известно, ближайшие аналоги силикатов — германаты и многие из них образуют широкие изоморфные ряды. В литературе не имелось данных о фазовых равновесиях в системе $Ca_2GeO_4 - Ba_2GeO_4$ рассматриваемой в качестве «модели» системы $Ca_2SiO_4 - Ba_2GeO_4$ рассматриваемой в качестве «модели» системы $Ca_2SiO_4 - Ba_2GeO_4$ расстояния системы $Ca_2GeO_4 - Ba_2GeO_4$ представлялось интересным не только с точки зрения дальнейшего развития методов физико-химического моделирования силикатных систем, но также для накопления нового экспериментального материала по катионному изоморфизму в собственно германатных системах.

Двухкальциевый германат кристаллизуется в трех полиморфных разновидностях: γ -форме, имеющей ромбическую симметрию и изоструктурной с оливином (⁴), *а*-модификации, кристаллизующейся в гексагональпой глазеритоподобной решетке (⁵, ⁶) и в форме «высокого давления», изоструктурной с двойной солью K₂NiF₄ (⁷). В первых двух полиморфных разновидностях германий находится в тетраэдрической, в последней — в октаэдрической координациях по отношению к кислороду. Ортогерманат бария Ba₂GeO₄ кристаллизуется в структурном типе $\beta = K_2SO_4$, с пространственной группой $D_{2h}^{-16} = Pnma$ (⁸).

В настоящей работе равновесные отношения в системе Ca₂GeO₄ — Ва₂GeO₄ изучались при атмосферном давлении в условиях термодинамической устойчивости низкотемпературной ү- и высокотемпературной а-форм ортогерманата кальция. При исследовании фазовых равновесий в системе Са₂GeO₄ — Ва₂GeO₄ были выделены 30 составов. Исходными реактивами для получения образцов служили CaCO₃ (х.ч.), BaCO₃ (ч.д.а.) и аморфная двуокись германия (о.ч.). Тщательно перемешанные смеси, спрессованные в виде таблеток, обжигались в силитовой и платиновой печах при 1350—1400° С. Для изучения фазового состава образцов в работе кристаллооптический, дифференциально-термический, использовались рентгенографический (в том числе высокотемпературный) методы анализов. Рентгеновское исследование проводилось на установках УРС-50И и ДРОН с Си K_{α} -излучением. Кривая ликвидуса в системе строилась по значениям температур окончательного плавления образцов в микропечи и на высокотемпературпом микроскопе (⁹).

Диаграмма состояния системы Ca₂GeO₄ — Ba₂GeO₄ с экспериментальными точками представлена на рис. 1. Как видно из диаграммы, на кривой ликвидуса имеются один максимум и два минимума, соответствующие температурам плавления соединения и двух эвтектик. В низкотемпературной части системы установлены три типа твердых растворов: на основе γ-Ca₂GeO₄ с максимальным содержанием Ba₂GeO₄ до 1,5 мол.%, на основе ортогерманата бария Ba₂GeO₄ с содержанием Ca₂GeO₄ до 4—7 мол. % в зависимости от температуры и на основе поликомпонентного соединения Ba₅Ca₃(GeO₄)₄ с интервалом концентраций от 25 до 43 мол. % Ca₂GeO₄.

Поскольку малые количества изоморфной добавки ортогерманата бария не обеспечивают длительной стабилизации α-формы Ca₂GeO₄, для

воспроизвеления всего диапазона составов твердых растворов на основе α -Ca₂GeO₄, в последние наряду с ортогерманатом бария вводилась добавка 1—1,5 вес. % В₂О₃, и образцы подвергались закалке. Предельное содержание ортогерманата бария в твердом растворе α-формы Ca₂GeO₄ оценивается примерно в 20 мол.%, причем с повышением температуры, как видно из диаграммы (рис. 1), область гомогенности нерасширяется — до сколько ~ 25 мол. % Ba_2GeO_4 при 1700°. Добавка ортогерманата бария более ~ 1,5 мол.% К ортогерманату кальция самостоятельно стабилизирует высокотемпературную форму ортогерманата кальция. Например, твердый раствор α-Са_{4,6}Ва_{0,4}(СеО₄), предварительно отожженный при

Рис. 1. Диаграмма состояния Ca₂GeO₄ — Ba₂GeO₄

1450°, сохраняется даже при медленном охлаждении образца и лишь длительный отжиг при температурах ниже поля его равновесия обеспечивает полиморфное превращение α-Ca₂GeO₄ твердого раствора с образованием двухфазной области, согласно приводимой на рис. 1 диаграмме.

На рис. 2 представлен график изменения показателей светопреломления твердых растворов на основе германата Ba₅Ca₃(GeO₄)₄ кристаллизуюцегося в структурпом типе глазерита. Как видно из рис. 2, на кривой светопреломления имеется перегиб в точке состава Ba₂GeO₄ 62,5% мол.% и

Рис. 2. Изменение показателей светопреломления твердого раствора Ва₅Са₃ (GeO₄)₄

Гио в Поче состава Вазсееод 62,5 % мол. % и Са₂GeO₄ 37,5 мол. %, отвечающий стехиометрии Ва₅Ca₃ (GeO₄)₄. Индивидуальность соединения была подтверждена микроскопическим и рентгенографическим анализами. Рентгенограмма Ва₅Ca₃ (GeO₄)₄ приведена на рис. 3. Германат плавится без разложения при 1780 \pm 30° и кристаллизуется в форме изометричных (округлых) пластипок. Показатели преломления соединения: $n_g = 1,824 \pm \pm 0,004, n_p = 1,811 \pm 0,004$, двупреломление $n_g - n_p = 0,013$, плотность соединения при 25° равна 5,27 г/см³.

Германат Ва₅Са₃ (GeO₄)₄ является кристаллохимическим аналогом соответствующего силиката и фторобериллата Rb₅Na₃ (BeF₄)₄. Наличие в системе твердых растворов на основе Ba₅Ca₃ (GeO₄)₄ подтверждается монотонным изменением межплоскостных расстояний в концентрационном интервале области го-

могенности (см. рис. 3). Как видно из диаграммы (рис. 1), область твердых растворов германата Ва₅Са₃ (GeO₄)₄ расширяется с повышением темиературы и достигает максимального значения при 1700°, от 47 мол. % Ва₂GeO₄ до 77 мол. % Ва₂GeO₄. Следует отметить, что наилучшая окристаллизованность образцов в данной области системы наблюдается при закалках от 1400—1500°.

В качестве иллюстрации на рис. 4 представлены некоторые данные термического анализа системы. Например, как и следовало ожидать, состав 80 мол. % Ca₂GeO₄ + 20 мол. % Ba₂GeO₄ имеет на термограмме при

2 3

4

6

1400

Рис. 3. Рентгенограммы твердого раствора $Ba_5Ca_3(GeO_4)_4$ Рис. 4. Термограммы образцов системы $Ca_2GeO_4 - Ba_2GeO_4$. $I - \gamma$ - Ca_2GeO_4 ; 2 - 90% $C_2Ge + 10\%$ B_2Ge ; 3 - 80% $C_2Ge + 20\%$ B_2Ge ; 4 - 70% $C_2Ge + 30\%$ B_2Ge ; 5 - 60% $C_2Ge + 40\%$ B_2Ge ; 6 - 50% $C_2Ge + 50\%$ B_2Ge ; 7 - 45% $C_2Ge + 55\%$ B_2Ge ; 8 - 40% $C_2Ge + 60\%$ B_2Ge

ет об отсутствии в этой области фазовых превращений вплоть до температуры плавления образцов.

Пограничные кривые двухфазных областей установлены путем длятельного отжига образцов при 1400—1500° и их последующего фазовог кристаллооптического и рентгенографического анализов. Эвтектика между твердыми растворами на основе α-Ca₂GeO₄ и Ba₅Ca₃(GeO₄)₄ имеет ссстав приблизительно 65 мол. % Ca_2GeO_4 и 35 мол. % Ba_2GeO_4 и лежит при температуре 1700 ± 30°. Эвтектика между твердыми растворами на основе ортогерманата бария и $Ba_5Ca_3(GeO_4)_4$ имеет состав ~ 85 мол. Ba_2GeO_4 и 15 мол. % Ca_2GeO_4 и соответствует температуре 1720 ± 30°.

Сравнение изученной диаграммы состояния Ca₂GeO₄ — Ba₂GeO₄ с однотипной по составу силикатной системой (¹) демонстрирует их глубокое физико-химическое подобие, включая аналогию кристаллического строения однотипных по составу индивидуальных соединений и твердых растворов на их основе. Отмеченное явление, подтверждая на конкретном примере наличие всесторонней аналогии физико-химических свойств между силикатами и германатами сложного состава, открывает новые возможности для получения широкой гаммы соединений с заданным комплексом свойств.

Ипститут химии силикатов им. И. В. Гребенщикова Академии наук СССР Ленинград Поступило 12 XI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. А. Торонов, Н. Ф. Федоров, ЖНХ, 9, в. 9, 1939 (1964). ² F. Nadachowski, М. Grylicki, Silikattechuik, 10, Н. 2, 77 (1959). ³ G. Päselt, O. Henning, Wissensch. Zs. d. Hochschule f. Architektur u. Bauwesen Weimst, 15, Н. 3 (1968). ⁴ H. Strunz, P. Jacob, Neues Jahrb. Mineral., Н. 4, 78 (1960). ⁵ P. У. Hэрс, III Международн. конгресс по химии цемента, М., 1958, стр. 27. ⁶ W. Eysel, T. Hahn, Zs. Kristallogr., 131, Н. 4/5, 322 (1970). ⁷ A. F. Reid, A. E. Ringwood, J. Solid State Chem., 1, № 3—4, 557 (1970). ⁸ Th. Hahn, W. Eysel, Intern. Congr. Crystallogr., Rome, 1963, р. 4. ⁹ Ф. Я. Галахов, Сборн. Современные методы исследования силикатов и строительных материалов, М., 1960.