УДК 535.324.344.340.8

ФИЗИЧЕСКАЯ ХИМИЯ

в. М. Золотарев, А. Ф. первеев

СПЕКТРОСКОПИЯ М.Н.П.В.О.— ВЫСОКОЧУВСТВИТЕЛЬНЫЙ МЕТОД ИЗУЧЕНИЯ АДСОРБИРОВАННОГО СОСТОЯНИЯ МОЛЕКУЛ

(Представлено академиком П. А. Ребиндером 13 XII 1971)

В работе (1) на базе спектроскопии многократного нарушенного полного внутреннего отражения (м.н.п.в.о.) (²⁻⁴) был разработан метод количественного анализа микродисперсных пленок SiO₂, полученных испарением в вакууме. В дальнейшем исследования были распространены на пленки из ZnS, MgF₂ и Ge, используемые при изготовлении светофильтров (³). Определение характеристик пористых адсорбентов-пленок (удельная пористость, размер пор и др.) осуществлялось путем измерения интенсивности полосы 3350 см⁻⁴ молекул H₂O, адсорбированных порами. Пары H₂O напускались в вакуумную камеру сразу после напыления пленки. Высокая удельная поверхность $400 \text{ m}^2/\text{г}$ и малые размеры пор 5-15 Å изученных пленок позволяют рассчитывать на перспективность их применения в сочетании с методом м.н.п.в.о. для решения задач, связанных с изучением адсорбированного состояния (⁵). Использование такого подхода обеспечивает следующие преимущества: 1) положение полос адсорбированных молекул в спектрах М.н.п.в.о. точно совпадает с положением этих же полос в спектрах пропускания, полученных на порошках (1, 2, 4); 2) поглощение света пленкой незначительно, так как толщины пленок обычно меньше 1 µ. Это позволяет получать спектры в днапазоне 0,15-250 µ; 3) регистрируется положение колебательных полос как адсорбата, так и адсорбента $({}^{i}); 4)$ потери света на рассеяние практически отсутствуют $({}^{i}, {}^{2}); 5)$ возможно количественное исследование пленок, так как они оптически изотропны (1, 3, 4); 6) достигается очень высокая чувствительность 1 . ·10-(11÷12) г вещества. Оценка получена при анализе спектра CHCl₃, адсорбированного на Ge (см. рис. 1); 7) способы вакуумного распыления пленок весьма технологичны (⁶) и позволяют готовить пленки с регулируемой удельной поверхностью из широкой гаммы веществ, причем возможно введение присадок, модифицирующих адсорбционные и каталитические свойства пленок.

В общем случае получение количественных данных из и.-к. спектров м.н.п.в.о. требует использования ЭВМ или номограмм (³), однако для тонких (< 1000 Å) или очень толстых (> 1 μ) пленок применимо соотношение $R = \exp(-a_1 N d_e)$, где $R - \kappa_0 \phi \phi$ ициент отражения, измеряемый на опыте; α_1 — показатель поглощения микропористой плепки (см⁻¹); N число отражений; de — эффективная толщина пленки, зависящая от геометрической толщины d, показателей преломления вещества пленки и адсорбата и ряда известных экспериментальных параметров (1, 2). Как показапо в работе (1), величина $\alpha_1 = A \alpha C U$, где A – коэффициент, учитывающий влияние оптических свойств адсорбента на силу взаимодействия света с адсорбированной молекулой. Величина А в общем случае вычисляется по обобщенной формуле Лорентц — Лоренца (7), куда необходимо подставить показатели преломления адсорбента, вещества адсорбата и экспериментально пайденное из спектра м.н.п.в.о. значение пористости U. Как показывают практические расчеты, влпяние адсорбционных сил на изменение оптических свойств адсорбата не приведет к существенному изменению

значения А. Для плепок из Ge (n = 4) значение A = 6,5, а для MgF_2 (n = 1,36) и SiO₂ (n = 1,45) $A = 1 \div 0,9$ (*); α — показатель поглощения адсорбированных молекул (cm^{-1}) ; C — степень заполнения пор адсорбатом, $0 \le C \le 1$. Таким образом, измерив R и вычислив α_1 , зная Cи U, можно найти α .

В настоящей работе возможности спектроскопии м.н.п.в.о. продемонстрированы на примере исследования адсорбции молекул CHCl₃ и CCl₄. На-

Рис. 1. Спектры м.н.п.в.о. хлороформа, адсорбированного па пленке Ge, d = 3300 Å, N = 13, угол падения света $\theta = 45^{\circ}$, неполярпзованный свет, прибор «Perkin Elmer 457»; I - до напуска паров H₂O, 2 - после напуска. Вверху рисунка графически указаны интенсивности полос жидкого CHCl₂, нормированные к полосе 1515 см⁻¹, интенсивность которой принята за единицу. У ординат сильных полос указан числовой фактор, на который умножалась исходная ордината (интенсивность) соответствующей полосы

пыление веществ MgF₂ и Ge на подложку из КРС-5 производилось резистивным и электроннолучевым методами соответственно (⁶) в вакууме 5. • 10⁻⁵ мм рт. ст. Затем в камеру пускались пары CHCl₃ (или CCl₄), после чего образец помещался в герметичную кювету от серийной приставки МНПВО-1 (⁸) и при помощи и.-к. спектрофотометра производилась запись спектров (рис. 1 п 2). Спектры молекул СНСІ, и ССІ, в адсорбированном состоянии резко отличаются от спектров исходных жидкостей по всем спектроскопическим параметрам: числу полос, их положению, интенсивности и др. Обращает на себя внимание появление двойной полосы в районе 1000 - 1100 см⁻¹ и резкое изменение вида полосы $v_3 = 786$ см⁻¹ в спектре CCl₄. Отметим, что для жидкости данная полоса — четко выраженный дублет. Следует отметить, что полосы v_3 молекул CHCl₃ и CCl₄ в спектрах адсорбции весьма характеристичны. Их положение близко к вычисленным кривым, которые являются результатом расчета оптических свойств спепифически не взаимодействующих аддитивных систем типа CCl₄—CHCl₈ и $CCl_4 - CHBr_3$ (7).

Таблица

Адсорбция СНСІ3 на пленках Ge МgF2			Жидкий CHCl3		Адсорбция CCl ₄ на пленках MgF ₂		Жидкий ССІ4		
∨, CM ⁻¹	α · 10−4, CM ^{→1}	v, CM ⁻¹	α·10-4, CM ⁻¹	v, см-1	α·10-4, CM-1	ν, CM ⁻¹	$\alpha \cdot 10^{-4},$ $c_{M^{-1}}$	у, СМ ⁻¹	α·10-4, CM-1
$1435 \\ 1262 \\ 1090 \\ 1020 \\ 808 \\ 700 \\ 808 \\ 700 \\ 808 \\ 700 \\ 808 \\ $	1 1,4 1,8 2,5 2,5	$ \begin{array}{r} 1430 \\ 1250 \\ 1090 \\ 1025 \\ 805 \\ 760 \\ \end{array} $	1,21,21,21,621,0	1220	0,3 (⁹)	1420 1077 1012 786	$0,2 \\ 0,6 \\ 0,9 \\ 1,2$	786	1 ,42 (⁹)

Электронноонтические параметры отдельных полос, определяющие их дитенсивность, оказываются весьма чувствительными к возмущению адэрбционными силами. Результаты предварительных оценок интенсивностей для изученных адсорбированных молекул приведены в табл. 1. Точдесть вычисленных величин а составляет ~ 50%. Из табл. 1 видно, что интенсивности полос 786 (CCl₄) и 762 см⁻¹ (CHCl₃) практически не меняв тся. Близлежащая полоса 808 см⁻¹ в спектре CHCl₃, вероятно, обуслов-

Рис. 2. Спектр м.н.п.в.о. CCl₄, адсорбированного на пленке MgF₂ d = 5000 Å, N = 13,0, θ = 45°, неполяризованный свет. Вверху рисунка указаны интенсивности полос жидкого CCl₄; нормировка выполнена для CCl₄

тена взаимодействием связи С—Cl с адсорбентом. Появление интенсивното дублета в области 1000—1100 см⁻⁴ в спектрах CHCl₃ и CCl₄ свидетельстзует о сходстве механизмов адсорбции этих молекул. Кроме того, в спектре CHCl₃ весьма характерно появление интенсивных полос 1435, 1360 и 585 см⁻⁴, две последние полосы, как видно из рис. 1, исчезают при взаимодействии адсорбата с парами H₂O. Отметим, что хотя адсорбция CCl₄ и CHCl₃ происходит на гидратированной пленке, однако дополнительный пазуск H₂O приводит к сильному изменению спектров.

Не вдаваясь пока в причины возникновения новых сильных полос в спектрах адсорбции CHCl₃ и CCl₄, следует заключить, что доложенный метод является мощным средством изучения адсорбированного состояния молекул и найдет широкое применение в работах, связанных с исследованием механизмов адсорбции.

Поступило 15 XI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. М. Золотарев, А. Ф. Первеев и др., Журн. прикл. снектроскоп., 16, № 3. 1 (1972). ² Н. Харрик, Спектроскопия внутреннего отражения, М., 1970. -А. Ф. Первеев, В. М. Золотарев и др., Оптика и спектроскоп., 32, № 3 (1972). Сборн. 4, Молекулярная физика и биофизика водных систем, под ред. М. Ф. Вукса, А. И. Сидоровой, Л., 1972. ⁵ Основные проблемы теории физической адсорбции, под ред. М. М. Дубинина, «Наука», 1970. ⁶ Физика тонких пленок, 4, под ред. Г. Хасса и Р. Туна, М., 1967. ⁷ В. М. Золотарев, Оптика и спектроскоп., 32, № 5 (1972). ⁵ В. М. Золотарев, Ю. Д. Пушкин, И. В. Пейсахсон, Приборы и техника эксп., № 5, 176 (1970). ⁹ G. Iгопs, Н. Тhотряоп, Proc. Roy. Soc., 298, 160 (1967).