УДК 547.419+543.51

Р. Г. КОСТЯНОВСКИЙ, В. К. ПОТАПОВ, Л. И. ИСКАКОВ, В. Г. ПЛЕХАНОВ

МАСС-СПЕКТРЫ ЭТИЛЬНЫХ ПРОИЗВОДНЫХ ЭЛЕМЕНТОВ V ГРУППЫ

(Представлено академиком В. Н. Кондратьевым 3 VIII 1971)

Данные по масс-спектрам соединений трехвалентного фосфора ограничены (1-8) и часто противоречивы (например (1, 2, 7, 8)). Сведения по массспектрам трехвалентных As, Sb, Bi имеются лишь в работах (4, 5, 9). Ослабление фрагментации аминного типа в производных P, As, Sb, Bi (4) и амидного типа в ацилфосфинах (6) мы объясняли ранее затруднением стабилизации соответствующих фрагментов $R_2 = CH_2 = CH_2 = P$, As, Sb, Bi) и $R_2 = C = O$ в связи с высоким инверсионным барьером (1,3 эв и выше), препятствующим переходу элемента в тригональное состояние, которое бы обеспечивало максимальную стабилизацию такого типа.

В данной работе исследованы масс-спектры соединений Et_3 , где $\Im = N, P, As, Sb, Bi, а также <math>Et_2 \Im H(D)$, где $\Im = N, P$ (масс-спектрометр MX-1303, при 30 и 12 эв) и фотоионизация Et_3 , где $\Im = N, P$ и Et_2O (масс-спектрометр MX-1311). Для азотсодержащих соединений основной процесс распада — аминная фрагментация, причем пик первого аминного фрагмента сохраняет высокую интенсивность при снижении ионизируюшего напряжения до 12 эв (рис. 1, 2 схема 1). В случае же производных

^{*,+}Метастабильные пики для Et₃N и Et₂NH соответственно

Р. As, Sb, Bi (рис. 1—3, схема 2) основной путь распада состоит в элимипровании этилена, причем в отличие от N эта фрагментация осуществляется пе из иона, а из ион-радикала. Пики фрагментов аминного типа для Р $m / e 103, 75 \pm 47$) имеют низкую интенсивность, которая существенно падает при 12 эв. Основные процессы фрагментации Et₂PH и Et₃P пред-

ставлены на схеме 2.

10 ДАН, т. 204. № 4

*,⁺ Метастабильные пики для Et₃P и Et₂PH соответственно

Для соединений As пики таких фрагментов $(m / e \ 147, 119, 91)$ имеют ничтожную интенсивность, а в случае Sb и Bi отсутствуют. Как и для метильных производных (⁴), при переходе от P к Bi усиливается тенденция

к отщеплению заместителя с разрывом связи Э—С.

Представляло интерес сопоставление энергий распада молекулярного иона с образованием фрагментов аминного типа $Et_2 \Im = CH_2$ при Э = N и Р. При ионизации электронным ударом для $\Im = P$ это значение A — I (разность потенциалов появления фрагмента А и потенциала ионизации молекулы I) составляет 3,73—3,80 эв (², ⁸). Одпако, как это пи странно, в литературе отсутствуют данные по величинам А для аминных фрагментов *. Значение А для Et₃N было недавно измерено нами методом фотоионизации (¹⁰). Поэтому мы обратились к этому более точному методу и для исследования фосфорного аналога. Полученные результаты представлены в табл. 1. Превышение величины А – І для Р по сравнению с N, равное 1,17 эв, хорошо согласуется с разностью инверсионных барьеров P и N (около 1 эв). Аналогичная закономерность наблюдается и для этильпроизводных ных элементов VI группы при переходе от Ок S (¹¹, ¹²) (см. табл. 1).

^{*} Когда работа была уже оформлена появились дапные по соединениям $Et_2 \Im CH_2 CH = CH_2$, $\Im = N$, O, S. Величины A - I: для $\Im = N$ 2,7 эв, для $\Im =$ = O 3,7 эв, для $\Im = S$ 3,8 эв (¹⁴).

Таким образом, различия фрагментации элементоорганических соединений при переходе сверху вниз по группе можно объяснить увеличением конфигурэционной стабильности элемента и соответственно ослаблением способности к эффективной стабилизации фрагмента с участием электронпой пары.

Таблица 1

Процесс	Относительная интенсивность при 12,08 эв, %	Потенциал иони- зации I и появ- ления A, эв	А — I, э в		
$Et_3P + hv \xrightarrow{-e^-} Et_3 \overset{\text{+}}{P}$	22,4	$7,86\pm0,03$			
$\operatorname{Et_2}^+ = \operatorname{CHCH_3} + \operatorname{H}^-$	0,8				
$\mathrm{Et_2}\overset{+}{\mathrm{P}} = \mathrm{CH_2} + \mathrm{CH_3}$	10,8	$10,15\pm0,05$	2,29		
$\mathrm{Et}_{2}\overset{+}{\mathrm{P}}\dot{\mathrm{H}}+\mathrm{C}_{2}\mathrm{H}_{4}$	100,0	$9,67 \pm 0,05$			
$\mathrm{Et}_{2}\overset{+}{\mathrm{P}}+\mathrm{C}_{2}\mathrm{H}_{5}$	5,2	11,00±0,05	-		
$\operatorname{EtPH}_{2}^{+\cdot}$ + 2C ₂ H ₄	26,00	$10,45 \pm 0,05$			
$\operatorname{Et}_{3}N \xrightarrow{-e^{-}} \operatorname{Et}_{3}N^{+}$		$7,58\pm0,03$	-		
$\mathbf{Et_2}^{\dagger} \mathbf{N} = \mathbf{CH_2} + \mathbf{CH_3}^{\cdot}$	-	8,70±0,20	1,12*		
$Et_2O \xrightarrow{-e^-} Et_2O$	100,0	$9,54 \pm 0,01$			
$\mathrm{Et_2}\overset{+}{\mathrm{O}} = \mathrm{CH_2} + \mathrm{CH_3}^{\cdot}$	34,0	$10,35 \pm 0,05$	0,81		
$Et_2S \xrightarrow{-e^-} Et_2S$	43,5**	8,42±0,01	<u> </u>		
$\operatorname{Et}\overset{+}{\mathrm{S}} = \operatorname{CH}_2 + \operatorname{CH}_3$	100,0	10,16±0,05	1,74		
$EtSH + C_2H_4$	48,5	9,90±0,03			
$\operatorname{EtS}^{+}C_{5}H_{11} \xrightarrow{-e^{-}} \operatorname{EtS}^{+}C_{5}H_{11}$	60 **	8,32±0,01			
$\mathrm{EtS}^{+}=\mathrm{CH}_{2}+\mathrm{C_{4}H_{9}}^{-}$	100,0	$10,27\pm0,07$	1,95		

* Данные из (10); для Et₂NH A — I = 0,85 эв. Для иона CH₂ = ⁺NH₂ значения A — I в случае MeNH₂, EtNH₂, PrNH₂ и BuNH₂ равны соответственно 0,93; 0,41; 0,57; 0,22 эв (11). ** При 13,75 эв (1²).

10* 915

В случае диэтилфосфина измерены масс-спектры отрицательных ионов (табл. 2).

Основные процессы диссоциативной ионизации состоят в отщеплении заместителей Н°или Et. При этом, в отличие от тетраалкильных производных элементов IV группы (¹⁵), в спектре отсутствуют ионы М-1⁻ и М-15⁻.

Таблица 2

Поступило 3 VHI 1971

Ионизирую- щее напряже- ние *, эв	Относительная интенсивность (%) ионов при m/e													
	89	88	62	61	60	59	57	45	43	41	33	32	31	25
4,5 ** 7,7 *** 30	100 1,4 100	1,2	0,6 1,6	1,5 100 38	$0,3 \\ 6,0 \\ 2,3$	$\frac{-}{2,0}$		$\frac{2,5}{12,5}$		 2,0	0,5 13,3	$\overline{\overset{-}{0,6}}_{25}$	 3,8	$0,5$ $1\overline{4,4}$

Ток электронов 10 на, распределение по энергиям 0,4 эв ширины на полувысоте.

*# Резонансный максимум иона Et₂P- (*m/e* 89). Резонансный максимум иона EtPH- (*m/e* 61).

Институт химической физики Академии наук СССР

Физико-химический институт им. Л. Я. Карпова Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ M. Halfmann, J. Chem. Soc., 1962, 3270. ² Y. Wada, R. W. Kiser, J. Phys. Chem., 68, 2290 (1964). ³ А. М. Duffield, Н. Budzikiewicz, С. Djerassi, J. Am. Chem., Soc., 87, 2920 (1965). ⁴ Р.Г. Костяновский, В. В. Якшин, Изв. АН J. Am. Chem., Soc., 87, 2920 (1965). ⁴ Р. Г. Костяновский, В. В. Якшин, Изв. АН СССР, сер. хим., 1967, 2363. ⁵ R. Colton, Q. N. Porter, Australian J. Chem., 21, 2215 (1968). ⁶ Р. Г. Костяновский, В. В. Якшин и др., Изв. АН СССР, сер. хим., 1967, 1399, 1968, 391, 651; 1969, 2588; R. G. Kostyanovsky, V. V. Yakschin, S. L. Zimont, Tetrahedron, 24, 2995 (1968). ⁷ R. G. Gillis, G. J. Long, Org. Mass Spectr., 2, 1315 (1969). ⁸ Г. М. Боголюбов, Н. Н. Гришин, А. А. Петров, ЖОХ, 39 (8). 1808 (1969). ⁹ R. Е. Winters, R. W. Kiser, J. Organomet. Chem., 10, 7 (1967). ¹⁰ Л. И. Искаков, В. К. Потапов, Хим. высоких энергий, 4, 381 (1970). ¹² Р. К. Потанов, Хим. высоких энергий, 4, 381 (1970). (1967). ¹⁵ Л. И. Искаков, В. К. Потанов, Хим. высоких энергий, 4, 381 (1970).
¹⁴ В. К. Потанов, Л. И. Искаков, Хим. высоких энергий, 4, 354 (1970).
¹⁵ Л. К. Боганов, Л. И. Вилесов, Хим. высоких энергий, 4, 355, 353 (1970).
¹⁶ Л. Сергеев, Ф. И. Вилесов, Хим. высоких энергий, 4, 305, 353 (1970).
¹⁷ Л. Lehn, In: Topics in Current Chemistry, 15, № 3, 311 (1970).
¹⁴ Г. М. Боголюбов, В. Ф. Плотников, З. Н. Коляскина, ЖОХ, 41, в. 3, 520 (1971).
¹⁵ Р. Г. Костяновский, Изв. АН СССР, сер. хим., 1967, 2784; Tetrahedron Letters. № 22, 2721 (1968).