УДК 521.21

АСТРОНОМИЯ

В. Н. ЖАРКОВ, В. П. ТРУБИЦЫН, А. Б. МАКАЛКИН

ГРАВИТАЦИОННЫЕ ПОЛЯ ЮПИТЕРА И САТУРНА

(Представлено академиком А. А. Михайловым 6 IX 1971)

1. Юпитер и Сатурн, по-видимому, являются газо-жидкими планетами, состоящими в основном из водорода и гелия (1). Рассмотрим гидростатически равновесные модели этих планет. Если известно распределение плотности в планете $\rho(l)$ или уравнение состояния вещества $p = p(\rho)$, то методы теории фигуры позволяют рассмотреть гравитационные моменты J_{2n} , определяющие внешний гравитационный потенциал

$$V\left(r,t\right) = \frac{GM}{r} \left[1 - \sum_{n=1}^{\infty} J_{2n} \left(\frac{a_1}{r}\right)^{2n} P_{2n}\left(t\right)\right].$$

Здесь G— гравитационная постоянная, M и a_1 — масса и экваториальный радиус планеты соответственно, r, $t = \cos \theta$ — координаты рассматриваемой точки, находящейся вне планеты (начало координат выбрано в центре масс), P_{2n} — четные полиномы Лежандра. Малым параметром теории фигуры является относительный квадрат угловой скорости $m = 3\omega^2/(4\pi G\rho_0)$,

Таблица 1

					<u> </u>	
Модель	J ₂ ·10 ³	- J ₄ ·10 ⁴	J ₆ ·10 ⁵	$-J_8 \cdot 10^6$	J ₁₀ •10 ⁷	
Юпитер						
ДеМаркус Пиблс Квадратичное распределение Линейное распределение Хаббард	14,5 15,7 18,1 15,4 15,7	6,44 6,77 8,29 6,36 6,61	3,91 4,29 5,41 3,89 4,11	$ \left\{ \begin{array}{c} 2,8 \\ 3,2 \\ 3,9 \\ 2,6 \\ 3,0 \end{array} \right. $	$ \begin{array}{c c} 2,2\\2,5\\3,0\\1,9\\2,3 \end{array} $	
Сатурн						
ДеМаркус Пиблс Квадратичное распределение Линейное распределение	$\begin{array}{ c c c } 17,3 \\ 17,8 \\ 30,6 \\ 25,8 \end{array}$	$\begin{array}{c c} 13,6 \\ 12,3 \\ 23,6 \\ 17,9 \end{array}$	$\begin{array}{ c c c } 15,8 \\ 12,4 \\ 26,0 \\ 18,3 \end{array}$	19 14 31 21	$ \begin{array}{ c c c } 24 \\ 17 \\ 41 \\ 26 \end{array} $	

Примечание. При расчетах приняты следующие исходные данные: Юпитер: $M=4,902\cdot 10^{39}$ г, $s_1=6,986\cdot 10^9$ см, $\rho_0=1,33$ г/см³; m=0,0843, $T=2\pi/\omega=9^{\rm h},87$; Сатурн: $M=0,569\cdot 10^{30}$ г, $s_1=5,763\cdot 10^9$ см, $\rho_0=0,71$ г/см³; m=0,1421; $T=2\pi/\omega=10^{\rm h},41$.

где ρ_0 — средняя плотность планеты, ω — угловая скорость вращения. Сжатие планеты $e_1 = (a_1 - b_1) / a_1 (b_1$ — полярный радиус), является малой величиной порядка m. Величины J_{2n} также являются малыми величинами и их можно разложить в ряд по сжатию или по параметру m (2 , 1) и в зависимости от точности, с которой известны величины J_{2n} из наблюдений, следует удержать то или иное число слагаемых:

$$J_2 = m[J_2(0) + mJ_2(1) + m^2J_2(2)], \quad J_4 = m^2[J_4(0) + mJ_4(1)],$$

$$J_6 = m^3J_6(0). \tag{1}$$

В (2) получена система уравнений теории гидростатически равновесной фигуры с точностью до членов, пропорциональных m^3 . Эта система содержит три интегро-дифференциальных уравнения для параметров e, k, h, определяющих форму планеты и связанных простыми соотношениями с моментами J_2 , J_4 , J_6 . При отбрасывании малых членов, пропорциональных m^2 и m^3 , система сводится к известному уравнению Клеро для сжатия

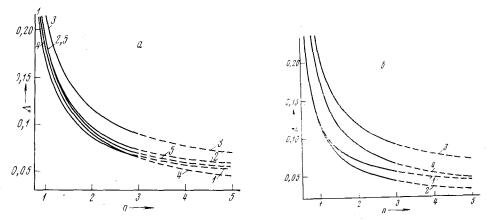


Рис. 1. Функция $\Lambda = |J_{2n}|/m^n$ для распределений плотности в Юпитере (a) и Сатурне (b): 1— по ДеМаркусу, 2— по Пиблсу, 3— квадратичного, 4— линейного, 5— по Хаббарду

e и дает возможность определить $J_2(0)$. Учет членов $\sim m^2$ приводит к системе двух уравнений: уравнению Дарвина — ДеСиттера для e и уравнению Дарвина для k. Решение этой системы позволяет вычислить $J_2(1)$ и $J_4(0)$. Для вычисления этих величин, входящих в (1), нужно решить систему трех уравнений для e, h, h (2).

Пока для Юпитера и Сатурна из наблюдений известны $J_2 = {}^2/_3 J$, $J_4 = -{}^4/_{15} K$, m и ρ_0 (см. табл. 2). На базе уравнений состояния водорода и гелия ДеМаркус (3), Пиблс (4) и Хаббард (5) подбирали модели этих иланет так, чтобы согласовать с наблюдаемыми данными. Первые оценки момента J_6 на основе теории фигуры третьего приближения были сделаны в (6 , 7) для упрощенных аналитических моделей.

Таблица 2

	Юпт	итер	Сатурн		
Модель	J ₂ .103	- J ₄ ·10 ⁴	J ₂ •108	- J ₄ ·10 ⁴	
ДеМаркус Пиблс Квадратичное рас- пределение Линейное распре- пеление	14,2 15,3 17,8 15,0	5,87 6,50 7,94 6,11	16,8 17,0 29,5 24,9	12,90 11,2 22,0 16,7	
Хаббард По данным наблю- дений	$\begin{vmatrix} 15,3\\14,71 \pm 0,14 \end{vmatrix}$	$6,34 \\ 6,74 + 3,76$	$16,67\pm0,02$	10,3±0,8	

2. В настоящем сообщении приведены результаты численных расчетов гравитационных моментов. Вычисления выполнены на ЭВМ. В табл. 1 даны значения моментов J_2 , J_4 , J_6 , вычисленных с точностью до величии порядка m, m^2 , m^3 соответственно, для моделей с распределениями плотности, предложенными ДеМаркусом, Пиблсом, Хаббардом, а также для линейного и квадратичного законов распределения плотности. Моменты J_2 и J_4 с точностью до m^2 и m^3 для этих моделей приведены в табл. 2.

Из табл. 1 и 2 видно, что величина $m^2J_2(1)$ в (1) дает вклад в J_2 для разных моделей Юпитера (2,1—2,2) %, Сатурна (3,2—3,7) %. Это превышает ошибку наблюдаемого значения J_2 . Вклад в J_4 слагаемого $m^3J_4(1)$ составляет для этих планет (3,8—4,3) % и (5,5—7,5) % соответственно.

Проделанные расчеты нозволили определить функцию $\Lambda = |J_{2n}|/m^n$, $n=1,2,3,\ldots$, которая, как оказалось, является монотонной. Пользуясь

рис. 1, мы получили экстраполяционные значения моментов J_s и J_{10} (см. табл. 1).

3. Средний радиус планеты (радиус сферы, объем которой равен объему планеты)

$$s_1 = a_1 (1 - \frac{1}{3}e_1 - \frac{1}{9}e_1^2 - \frac{8}{15}k)$$

с точностью до членов порядка m^2 . Величина среднего радиуса s_1 , которая вместе с массой и периодом вращения планеты

является исходной при определении гравитационных моментов, известна пока с небольшой точностью. Это вызвано малой точностью измерения экваториального и полярного диаметров, которые различаются у разных авторов. Так, из данных, приведенных в (8), получаются значения $s_1 = (6.936 \pm 0.01) \cdot 10^9$ см для Юпитера и $s_1 = (5.768 \pm 0.024) \cdot 10^9$ см для Сатурна, отличающиеся от использованных в (8). В связи с этим мы рассчитали поправки к гравитационным моментам, обусловленные изменением среднего радиуса. Если оставить неизмененными M, ω , а $p(\varphi)$ изменять только в малой центральной области радиуса $2s_1$, то вариации средней плотности среднего радиуса связаны соотношением

$$\delta \rho_0 = -\frac{3\rho_0}{s_1} \, \delta s_1, \tag{2}$$

и исправленные значения гравитационных моментов вычисляются по формуле

$$J_{2n}(\rho_0 + \delta \rho_0) = J_{2n}(\rho_0) \left(1 - C_n \frac{\delta \rho_0}{\rho_0} \right),$$

$$C_n = -\left(\frac{\partial \ln J_{2n}}{\partial \ln \rho_0} \right)_{M, \omega, p(\rho)}.$$
(3)

В табл. 3 приведены значения логарифмических производных C_n для некоторых моделей планет.

Если учет членов $\sim m^3$ в модели Пиблса для Сатурна улучшает согласование вычисленного значения момента J_4 с наблюдаемым (J_4 уменьшается на 6%), то использование среднего радиуса Сатурна по (8), наоборот, увеличивает имеющееся расхождение (J_4 увеличивается на 3%). Формулы (2) и (3) и табл. 3 позволят в будущем, по мере уточнения размеров планет, оценивать соответствующие поправки в значения J_2 и J_4 , полученные из наблюдений, без подробных вычислений.

Институт физики Земли им. О. Ю. Шмидта Академии наук СССР Москва Поступило 31 VIII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Н. Жарков, В. П. Трубицын, Л. В. Самсоненко, Физика Земли и планет. Внутреннее строение и фугуры, М., 1971. ² В. Н. Жарков, В. П. Трубицын, Астрон. журн., 46, 1252 (1969). ³ W. С. De Marcus, Astron. J., 63, 2 (1959). ⁴ P. G. E. Piebles, Astrophys. J., 140, 328 (1964). ⁵ N. W. Hubbord, Astrophys. J., 155, 333 (1969). ⁶ В. Н. Жарков, В. П. Трубицын, Астрон. журн., 47, 1268 (1970). ⁷ В. Н. Жарков, В. П. Трубицын, Астрон. журн., 48, 590 (1971). ⁸ А. Dollfus, In: Surfaces and Interiors of Planets and Satellites, London — N. Y., 1970.