УЛК 549.31.3

МИНЕРА**ЛОГИЯ**

Л. М. ЛУРЬЕ, Н. В. ТРОНЕВА, А. И. ЦЕПИН, Л. Н. ВЯЛЬСОВ

БЕРРИИТ ИЗ МЕСТОРОЖДЕНИЯ ТАРЫ-ЭКАН (ПЕРВАЯ НАХОДКА В СССР)

(Представлено академиком Д. С. Коржинским 7 IV 1971)

Впервые берриит — серебро-медно-свинцовый сульфовисмутид состава $Pb_3Bi_7(Ag_{1.5}Cu_{3.5})S_{16}$ — был найден на руднике Ивигтут в Гренландии Г. Паули в 1961 г., а детально описан Каруп-Мюллером в 1966 г. (6).

В рудах полиметаллического месторождения Тары-Экан (Восточный Карамазар, Средняя Азия) одним из авторов (Л. М. Лурье) был обнаружен сульфовисмутид, который на основании минераграфического, оптического, рентгено-спектрального (микрозондового) и рентгеновского изу-

чения с уверенностью может быть отнесен к беррипту.

Тары-Экан принадлежит к трещинно-метасоматическим месторождениям Восточного Карамазара, залегающим в кислых эффузивах и пирокластических разностях верхнепалеозойского возраста. Рудные тела представлены сетью жилок, прожилков и вкрапленностью в березитизированных породах. Главными рудными минералами являются халькопирит, галенит, сфалерит, менее распространены гематит, пирит, блеклая рупа. Среди сульфовисмутидов наиболее широко развиты айкинит, матильлит. бенжаминит и реже встречается берриит и минерал типа нейита. В возрастном отношении сульфовисмутиды являются наиболее поздними рудными минералами. Жильные минералы, находящиеся в ассоциации с рудными. представлены кварием, карбонатами и баритом. Взаимоотношения минеральных (рудных) парагенезисов Тары-Экана описаны в специальной статье. Характерной особенностью сульфовисмутилов месторождения Тары-Экан является их тесное срастание. Исключение составляет лишь айкинит, который наряду со срастаниями образует также моноскопления по 0.5—1 см в поперечнике в рудном или жильном агрегате.

Берриит встречается в виде удлиненных пластинчатых и таблитчатых зерен и их агрегатов в срастании с матильдитом и реже нейитом (?) и диагностируется только под микроскопом. Внутри его зерен обнаруживается тонкотаблитчатое строение. Размер отдельных индивидов колеб-

лется от долей миллиметра до 0,05 см по длинной оси.

В отраженном свете берриит белый. Двуотражение для отдельных зерен не улавливается, но в сростках зерен оно становится заметным. В иммерсии двуотражение несколько усиливается. Анизотропия минерала отчетливая от голубовато-серых до красновато-коричневых тонов. Оптические константы берриита исследовались на установке «ПИОР» с автоматической регистрацией измерений. В качестве опорных эталонов использовались кремний и пирит. Значения R берриита в интервале $440-740\,$ ми таковы:

λ, мμ	440	460	480	500	520	540	5 6 0	580
R_{g}	50, 2	49, 2	49,1	49,3	48, 3	47,7	47,4	46.8
$R_{m(?)}$	49,0	48,0	47,9	47,5	46, 8	46,1	45, 7	45.4
R_p	46,5	45,8	45,9	45, 5	44,6	44,0	43,6	43,3
λ, мμ	600	629	640	660	680	700	720	740
$\lambda, $ м μ R_g	$600 \\ 46, 3$	$\frac{629}{46,2}$	640 46,1	$\frac{660}{46,1}$	$680 \\ 46,0$	700 45,9	$720 \\ 45,6$	$740 \\ 45,0$
•			-					

С целью сопоставления нами приводятся также значения R для бенжаминита из Адрасмана и сульфовисмутида меди и серебра из Джиды (3), оптические свойства которых исследовались в тех же условиях. Как видно из рис. 1, кривые отражения этих трех минералов достаточно сходны по форме. Близки у них и абсолютные значения R. Поэтому при визуальных наблюдениях под микроскопом минералы эти практически не отличимы, и их диагностику следует проводить используя лишь точные данные R в возможно более широкой области спектра. Статистические измерения R на разноориентированных сечениях берриита позволили отнести его к числу двуосных, оптически отрицательных минералов ($R_g \parallel C$). Для спектра отражения берриита характерен четко выраженный максимум при

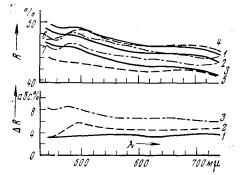


Рис. 1. Вверху — спектры отражения берринта $(I-R_{\rm g},\,2-R_{\rm m},\,3-R_{\rm p})$; бенжаминита из Адрасмана $(4-R_{\rm g}',\,5-R_{\rm p}')$ и сульфовисмутида меди и серебра вз Джиды $(6-R_{\rm g},\,7-R_{\rm m})$; внизу — кривые дисперсии $\Delta R=(R_{\rm g}-R_{\rm p})$ для берринта (I), бенжаминита (2) и сульфовисмутида меди и серебра из Джиды $(3;\,R_{\rm m}-R_{\rm p})$

490—500 мµ на фоне постепенного спада значения R в диапазоне 440—600 мµ. В области 600—700 мµ наблюдается плато, затем значения R вновь постепенно уменьшаются. Эти особенности характерны для трех по-казателей отражения. Двуотражение берриита при 580 мµ составляет 3,5 абс. %, или ~8 отн. %. Дисперсия двуотражения у него практически отсутствует.

Максимальные различия между оптическими свойствами вышеуномянутых трех минералов выявляются в синей части спектра. Для бенжаминита максимум при 500 мµ выражен более четко; кроме того, он не фиксируется для значения R_p .

На рис. 1 показаны кривые, характеризующие дисперсию двуотражения, т. е. величину $(R_g'-R_p')$, для разных длин воли. Из анализа кривых

видно, что, исследуя характеристические дисперсии ΔR в синей части спектра, можно установить различие между этими тремя минералами.

При диагностическом травлении действие стандартных реактивов на берриит следующее: HCl (1:1); HNO $_3$ (1:1); KCN (20%); FeCl $_3$ (20%) — отрицательное. Концентрированная HNO $_3$ в течение 30 сек. дает коричневый стирающийся налет.

Химический состав минерала исследован методом локального рентгеноспектрального анализа на приборе MS-46 фирмы «Сашеса». Режим работы электронного зонда 30 кв, 6 на, размер зонда 1—2. Угол выхода рентгеновского излучения 18°. Аналитическими линиями выбраны $Ag_{L_{\alpha}}$, $Cu_{K_{\alpha}}$ $Bi_{\beta_{\alpha}}$, $S_{K_{\alpha}}$, $Pb_{L_{\alpha}}$. Отсутствие накладывающегося As проверено по линии $As_{K_{\beta}}$ эталонами являлись металлы Ag, Cu, Bi и FeS₂, Pd_3Pb_2 . Регистрация излучения производилась пропорциональными счетчиками в режиме селекции с шириной окна 60% от величины порога дискриминации.

Качественный анализ распределения характерных элементов производился съемкой в поглощенных электронах и рентгеновском излучении при сканировании зондом по площади 100 μ² или по профилю на протяжении 100—500 μ. Как это видно на рис. 2 (см. вкл. к пол. 937), распределение элементов в пределах каждого минерала равномерно. Весьма интересны также кривые концентрации отдельных элементов (Ag, Pb, Cu), полученные при шаговом сканировании срастаний матильдита и берриита (рис. 3).

При проведении количественных измерений неоднородность распределения по составу проверялась измерениями не менее чем в 30—40 точках в пределах каждого зерна. Рассеяние результатов измерения, порядка

2—3%, обусловлено только небольшими дефектами поверхности шлифа. Полученные относительные интенсивности пересчитывались в концентрации на машине БЭСМ-6 по программе Шпрингера (7). При этом дополнительную погрешность при пересчете (порядка 2—5 отн.%) вносят

поправки на разницу состава образца и эталона. Доверительный интервал в определении содержания основных компонентов (концентраций и атомных количеств), рассчитанный согласно Дорфелю (²) формуле $2S_c/c\sqrt{n}$ (где S_c — среднее квадратичное отклонение от средней концентрации, c — средняя концентрация, n — число разных зерен), составляет для берриита Bi 0,4, Pb 6, (Cu, Ag) ~ ~3, S 1,2%. Как это видно из табл. 1, формула нашего минерала весьма к беррииту из Ивигтута (6).

Рентгенометрический анализ был произведен в лаборатории минераграфии нашего института Г. В. Басовой. Материал для съемки извлекался под микроскопом из минеральных обособлений, ранее проанализированных микрозондом, размером не менее $0.05 \, \,\mathrm{mm} \,$ ($^{\mathrm{I}}$). Съемка производилась на установке УРС-55 в камере КРД диаметром 57,3 мм на Fe-излучении без фильтра.

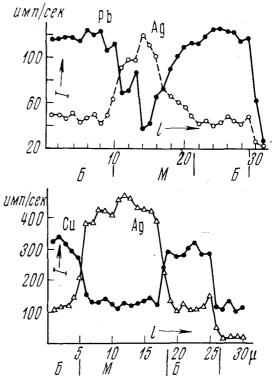


Рис. 3. Кривые концентраций элементов, полученные при шаговом сканировании срастаний берринта (Б) и матильдита (М). Вверху— серебро и свинец; внизу— серебро и медь. Расстояния между точками определения равны 1 µ

Следует отметить, что изза очень малого количества вещества рентгенограмма несколько ослаблена. Результаты рентгенометрического исследования берриита: 3,514 (7): 3,323 (1); 3,021 (1); 2,916 (5); 2,805 (10); 2,206 (1); 1,970 (1), 7,753 (2).

Таблица 1 Химический состав берриита по данным рентгено-спектрального анализа

	Образец № 1				Образец № 2				Среднее для 2 образцов					
Элемент	9/0	попр. коэф.	привед. к 100%	ат. колич.	коэф.	9%	попр. коэф.	привед. к 100%	ат. колич.	коэф.	%	привед. к 100%	ат. колич.	коэф.
Bi Pb Cu Ag S	51,0 20,9 7,9 5,0 18,1	1,083 1,059 1,109 2,499 1,105	49,6 20,9 7,7 4,9 17,6	0,236 0,097 0,121 0,046 0,550	6,92 2,82 3,52 1,34 16	50,9 19,5 6,5 6,9 18,3	1,127 1,054 1,109 2,464 1,093	49,9 19,1 6,4 6,8 17,9	0,239 0,092 0,101 0,063 0,558	6,84 2,64 2,89 1,81 16	5,10 20,2 7,2 6,0 18,2	49,7 19,7 7,0 5,8 17,7	0,238 0,095 0,110 0,054 0,552	6,90 2,75 3,19 1,57 16
	102,9					102,1					102,6			

Примечание. Обр. № 1 — полированный шлиф 990—991, $Pb_{2,82}Bi_{6,92}$ ($Cu_{3,52}Ag_{1,34}$) $_{4,86}S_{16,0}$: обр. № 2 — полированный шлиф № 1071, $Pb_{2,64}Bi_{6,84}$ ($Cu_{2,58}Ag_{1,81}$) $_{4,70}S_{16,00}$. Для среднего принято $Pb_{2,75}Bi_{16,90}$ ($Cu_{3,19}Ag_{1,57}$) $_{4,76}Si_{6,00}$. Берриит из Ивигтута (7)— $Pb_{3}Bi_{7}$ ($Cu_{3,5}Ag_{1,5}$) $_{5}S_{16,00}$. Аналитики Н. В. Тронева и А. И. Цепин.

В основном у берриита из Тары-Экана главные линии совпадают с таковыми берриита из Ивигтута (6). Отсутствуют линии 3,74 (6) и 3,49 (9).

Близость берриита с бенжаминитом (4) и нейитом (5) по основным линиям дебаеграмм говорит, по-видимому, об их изоструктурности.

Поступило 24 III 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Д. Генкин, Н. В. Королев, Геол. рудн. месторожд., № 5 (1961). ² К. Дорфель, Статистика в аналитической химии, М., 1969. ³ Т. Н. Шадлун, Д. О. Онтоев и др., Зап. Всесоюзи. мин. общ., 98, в. 4 (1969). ⁴ L. С. Веггу, R. М. Тhompson, The Peacock Atlas, N. Y., 1962. ⁵ A. D. Drummond, I. Trotter et al., Canad. Mineralogist, 10, 1 (1969). ⁶ S. Karup-Müller, Canad. Mineralogist, 8, 4 (1966). ⁷ G. Springer, Forschr. Mineral., 45, H. 1 (1967).