УДК 519.21

MATEMATUKA

В. И. ПАУЛАУСКАС

О ФУНКЦИЯХ КОНЦЕНТРАЦИИ СЛУЧАЙНЫХ ВЕКТОРОВ

(Представлено академиком А. Н. Колмогоровым 9 XII 1971)

1. Если ξ — одномерная случайная величина, то ее функция концентрации (ф.к.) $q(\xi, \lambda)$ определяется для всех $\lambda > 0$ равенством

$$q(\xi,\lambda) = \sup_{x} P\{x \leq \xi \leq x + \lambda\}.$$

Наиболее интересным предметом, связанным с ф.к., является рассмотрение свойств $q(S_n, \lambda)$, где S_n — сумма n случайных величин. В случае независимых случайных слагаемых исследования, начатые П. Леви ($^{\epsilon}$) и А. Н. Колмогоровым (4), были продолжены многими авторами; последние результаты и библиографию по этому поводу можно найти в работах (3 , 5).

В многомерном случае ф.к. были определены (а это можно сделать не-

сколькими способами) и исследовались в работах (2, 3, 9, 10).

Обозначим $\Sigma_{\rho} = \{x \in R_{h}: |x| < \rho\}, \ 0 < \rho \in R_{1}, \ D_{\lambda} = \{x \in R_{h}: |x_{i}| < < \lambda_{i}\}, \ \lambda = (\lambda_{1}, \dots, \lambda_{h}) \in R_{h}.$ Если X - k-мерный случайный вектор (с.в.), A — некоторое борелевское множество из R_{k} , то $Q(X, A) = \sup_{x \in R_{k}} P\{X \in A\}$

 $\in A + x$ }. Б. А. Севастьяновым (10) были введены более общие ф.к. Пусть $\mathscr{E}_i(v)$, $1 \leqslant i \leqslant k$, v > 0, обозначает класс всех выпуклых универсально измеримых множеств в R_k , пересечения которых со всякими гиперилоскостями размерности i имеют i-мерный объем, не превосходящий v. Тогда $Q_i(X,v) = \sup_{A \in \mathscr{E}_i(v)} P\{X \in A\}$. В этих обозначениях в работах (2) и

(3) рассматривались ф. к. $Q(S_n,D_k)$ и $Q(S_n,\Sigma_p)$, где $S_n=\sum_{i=1}^n X_i, X_i$ — неза-

висимые с.в., а в (9) была доказана гипотеза Севастьянова о поведении $Q_i(S_n,v)$ по отношению к n в случае независимых и одинаково распределенных слагаемых.

Приводимые ниже результаты являются продолжением упомянутых работ.

Буквой C будем обозначать абсолютные константы, а через $C(\cdot)$ — константы, зависящие лишь от параметров, указанных в скобках.

2. Лемма. Для любого с.в. $X = (X_1, \dots, X_h)$ и v > 0 имеет место неравенство

$$Q_1(X,v) \leqslant \inf_{|t|=1} q((X,t),v), \quad t \in R_k,$$
(1)

в частности, $Q_{\scriptscriptstyle 1}(X,v) \leqslant \min_{1\leqslant i\leqslant k} q^{\check{\scriptscriptstyle 1}}(X_i,v)$.

Неравенство (1) является довольно грубым, но зато оно имеет очень большую область применения. Так, например, если $X \equiv S_n = \sum_{i=1}^n X_i$, где X_i , i=1, 2,..., n,— независимые с.в., то оценка $Q_1(S_n, v)$ посредством (1) сводится к оценке ф.к. одномерной случайной величины $S_{n, i} = \sum_{i=1}^n (X_i, t)$ — суммы независимых случайных величин. Если с.в. X_i , $i=1,2,\ldots,n$, связаны некоторой зависимостью (например, m-зависимы, связаны в цепь

Маркова), то такой же зависимостью будут связаны и одномерные случайные величины $(X_i, t), i = 1, 2, ..., n, |t| = 1$. Далее, если X — безгранично делимый с.в., то безгранично делимыми будут случайные величины (X,t), |t|=1, и это позволяет применять одномерный результат из $({}^{3})$ для оценки ф.к. $Q_i(X, v)$.

В качестве примера сказанного приведем несколько оценок в случае независимых слагаемых, полученных применением (1) и результата из (5). Если X — с.в. с распределением P(A), то через X^* будем обозначать симметризованный с.в. и $P^*(A) = P\{X^* \in A\}$. Обозначим

$$D^{2}(\xi,\lambda) = \lambda^{-2} \int_{|x| < \lambda} x^{2} dF(x) + \int_{|x| \geqslant \lambda} dF(x),$$

где ξ — случайная величина с функцией распределения F(x), $\lambda > 0$. Свойства функции $D^2(\xi,\lambda)$ приведены в $\binom{3}{i}$. Теорема 1. Пусть $X_i=(X_i^{(1)},\ldots,X_i^{(k)}),\ i=1,2,\ldots,n,$ — независи-

мые с.в. с распределениями $P_i, S_n = \sum_{i=1}^n X_i.$

Тогда для любых $0 < v_i \leqslant v, \ i = 1, 2, \ldots, n,$ имеют место неравенства

$$Q_{1}(S_{n}, v) \leq Cv \cdot \inf_{|t|=1} \frac{\sum_{i=1}^{n} v_{i}^{2} D^{2} ((X_{i}^{*}, t), v_{i}) q ((X_{i}, t), v)}{\left\{\sum_{i=1}^{n} v_{i}^{2} D^{2} ((X_{i}^{*}, t), v_{i})\right\}^{3/2}} \leq Cv \left\{ \sup_{|t|=1} \sum_{i=1}^{n} v_{i}^{2} \left[\frac{1}{v_{i}^{2}} \int_{|x| < v_{i}} (x, t)^{2} P_{i}^{*} (dx) + \int_{|(x, t)| \ge v_{i}} P_{i}^{*} (dx) \right] \right\}^{-1/2} \leq Cv \left\{ \sup_{|t|=1} \sum_{i=1}^{n} v_{i}^{2} \left[1 - q ((X_{i}^{*}, t), v_{i})\right] \right\}^{-1/2} \leq Cv \left\{ \max_{1 \leq i \leq k} \sum_{i=1}^{n} v_{i}^{2} \left[1 - q (X_{i}^{(i)^{*}}, v_{i})\right] \right\}^{-1/2}.$$

$$(2)$$

Следствие 1. Если с.в. X_i , $i=1,2,\ldots,n$, независимы и одинаково $pacnpe \partial e л e н ы, 0 < \tau < v, то$

$$Q_1(S_n, v) \leqslant \frac{Cv}{\tau \sqrt{n} \left[1 - \inf_{\substack{t \mid t = 1 \\ t \mid t \mid = 1}} q((X^{*1}, t), \tau)\right]^{1/2}}.$$
 (3)

Из сравнения (3) с имеющимися оценками из (3) видно, что оценка (1) имеет еще одно достоинство — отсутствие явной зависимости от размерности k, что позволит перейти к бесконечномерному случаю.

3. Теперь будем рассматривать независимые одинаково распределенные с.в. $X_i, i = 1, 2, \ldots, n$, с невырожденным распределением P(A) (т. е. носитель меры P не сосредоточен ни в каком подпространстве размерности,

меньшей, чем k), $S_n = \sum_{i=1}^n X_i$. Формулируемые ниже теоремы являются многомерными обобщениями результатов Эссеена (3) в одномерном слу-

чае; их доказательства проводятся по схеме одномерного случая.

 ${f T}$ e o ${f p}$ e ${f m}$ a $\ 2$. E cли $M|X_i|^2=\infty$, то для каждого фиксированного v > 0

$$Q_1(S_h, v) = o(n^{-h/2}) \quad npu \quad n \to \infty.$$

Tеорема 3. Если $M|X_1|l < \infty, 0 < l \leq 2$, тогда

$$Q_1(S_n, v) \geqslant C(k, l) v^k [v + 2 \sqrt{k} (\beta_l(a))^{1/l}]^{-k} n^{-k/l},$$

$$\mathcal{E}\partial e \quad \beta_l(a) = \sum_{i=1}^k \beta_l^{(i)}(a^{(i)}), \quad \beta_l^{(i)}(a^{(i)}) = M \mid X_1^{(i)} - a^{(i)} \mid^l, \quad a = (a^{(1)}, \dots, a^{(k)}) \in R_k.$$

Теорема 4. Пусть X_i , $i=1,2,\ldots,n$ — независимые невырожденные с.в. с распределением P(A). Для того чтобы существовали константы $C_i(k,P,v)$, j=1,2, такие, что

$$C_1(k, P, v) n^{-k/2} \leqslant Q_1(S_n, v) \leqslant C_2(k, P, v) n^{-k/2},$$

необходимо и достаточно выполнения условия $M|X_i|^2 < \infty$.

4. Пусть X_i , i=1,2,...,n,— независимые с.в. с распределениями $P_i(A)$, γ -некоторое целое число, $0 \leqslant \gamma < k$, $\chi_j(a) = \inf_{\|t\|=1} \int\limits_{\|x\| < a} (t,x)^2 \, P_j^*(A), \quad p_j(b) = P\{|X_j^*| > b\}.$

Для любых положительных ρ_j , $j=1,2,\ldots,n$, мы можем определить следующие величины:

$$A = \sum_{j=1}^{n} \left[\rho_j^{2k} p_j \left(\rho_j \right) + \rho_j^{2\gamma/k-\gamma} \chi_j \left(\rho_j \right) \right],$$
 $\beta_j = \frac{1}{A} \rho_j^{2\gamma/k-\gamma} \chi_j \left(\rho_j \right), \quad \gamma_j = \frac{1}{A} \rho_j^{2k} p_j \left(\rho_j \right),$
 $u = \sum_{j=1}^{n} \beta_j, \quad v = \sum_{j=1}^{n} \gamma_j, \quad u + v = 1.$

T е о р е м а 5. $\mathit{Hyctb}\ X_i, i=1,2,\ldots,n$, независимые $\mathit{c.s.}, \quad S_n=\sum_{i=1}^n X_i$. $\mathit{Torda}\ \partial\mathit{л}\mathit{n}\ \mathit{scex}\ 0<\rho_1,\rho_2,\ldots,\rho_n\leqslant\rho\ \mathit{u}\ \mathit{любого}\ \mathit{ueлoro}\ 0\leqslant\gamma< k$ $O_1(S_n,\rho)\leqslant C(k)\,\rho^kA^{-\frac{N}{2}-\frac{N}{2}(k-\gamma-1)u}.$

При $\gamma = k-1$ эта теорема переходит в теорему 6,1 из работы ('). Оценивая $A \geqslant \sum_{i=1}^n \rho_i^{2k} \left[1-Q\left(X_j, \Sigma_{\mathbf{P}_j}\right)\right]$, получаем

Следствие 2. Для любого целого $0 \leqslant \gamma < k$

$$Q_{1}(S_{n}, \rho) \leq C(k) \rho^{k} \left\{ \sum_{j=1}^{n} \rho_{j}^{2k} \left[1 - Q(X_{j}, \Sigma_{\rho_{j}}) \right] \right\}^{-1/2 - 1/2(k - \gamma - 1)u}.$$
(4)

Следствие 3. Пусть с.в. X_i , $i=1,2,\ldots,n$, независимы и одинаково распределены, $B_1=\tau^{2\gamma/(k-\gamma)}\chi_1(\tau)$, $B_2=\tau^{2k}P\{|X_1^*|>\tau\}$, $B=B_1+B_2$, $u_1=B_1/B$, $v_1=B_2/B$.

Tогда для любого целого $0 \leqslant \gamma < k \ u \ {\it scex} \ 0 < \tau \leqslant \rho$

$$Q_{1}(S_{n}, \rho) \leqslant C(k) \rho^{k}(B \cdot n)^{-\frac{1}{2} - \frac{1}{2} (k - \gamma - 1) u_{1}} \leqslant \leqslant C(k) \rho^{k} \{ n \tau^{2k} [1 - Q(X_{1}, \Sigma_{\tau})] \}^{-\frac{1}{2} - \frac{1}{2} (k - \gamma - 1) u_{1}}.$$
 (5)

По сравнению с оценками (6.7) и (6.8) из (3), оценки (4) и (5) точнее ввиду наличия слагаемого $-\frac{1}{2}(k-1-\gamma)u$ в показателе степени.

5. Теперь рассмотрим случай, когда множества, по которым берутся супремум при вычислении ф.к., увеличиваются с увеличением числа слагаемых n. Для оценки $Q(S_n, \Sigma_{\rho_n})$ или $Q_1(S_n, v_n)$, где $\rho_n, v_n \to \infty$ при $n \to \infty$ с некоторой скоростью, можно применять уже имеющиеся результаты. Но если рассматривать $Q(S_n, D_{\lambda(n)})$ и только для одного индекса $1 \le i_0 \le k$ $\lambda_{i_0}(n) \to \infty$ при $n \to \infty$, то аппроксимация этой ф.к. функцией $Q_1(S_n, v_n)$ будет слишком грубой. Поэтому приводим теорему 6, являющуюся обобщением одного результата Б. Розена (8).

Теорема 6. Пусть X_i , $i=1,2,\ldots,n$,— независимые невырожденные с.в. с распределением P(A). Если $\lambda_i(n)\leqslant n^{p_i},\ 0\leqslant p_i<^{1/2},\ i=1,2,\ldots,k$,

$$Q(S_n, D_{\lambda(n)}) \leqslant C(k, P) n^{-\sum_{i=1}^{k} (1/2 - p_i)}.$$

Аналогично можно получить оценку в случае $\lambda_i(n) \leqslant \varepsilon_i \sqrt{n},$ $i=1,2,\ldots,k.$

6. Пусть $X = (X_1, X_2, \dots, X_k)$ безгранично делимый с.в. с характеристической функцией

$$g(t) = \exp\left\{i(t, a) - \frac{1}{2}P(t) + \int \left(e^{i(t, x)} - 1 - \frac{i(t, x)}{1 + |x|^2}\right)M(dx)\right\}, \quad (6)$$

где P(t) — неотрицательно определенная квадратичная форма от переменных t_1,t_2,\ldots,t_k ; неотрицательная мера M, определенная на борелевских множествах, такая, что $\int \frac{|x|^2}{1+|x|^2} M(dx) < \infty$ (7). Знак $\int \int \frac{|x|^2}{1+|x|^2} dx$ что начало координат исключено из области интегрирования.

Обозначим через $\alpha_1^2 \leqslant \alpha_2^2 \leqslant \ldots \leqslant \alpha_k^2$ и $\beta_1^2(a) \leqslant \beta_2^2(a) \leqslant \ldots \leqslant \beta_k^2(a)$ собственные значения квадратичных форм P(t) и $\int\limits_{|x|<a} (t,x)^2 M(dx)$ соотпольтельно

Теорема 7. Если X-c.в. с характеристической функцией ($^{\epsilon}$), тог-да справедливы оценки

$$\begin{split} Q_{1}(X,\,v) \geqslant & \, C(k) \exp\left\{-4 \int\limits_{|x|>v} M\,(dx)\right\} \prod_{i=1}^{k} \min\left(\frac{v}{(\alpha_{i}^{2}+\beta_{k}^{2}\,(v))^{1/2}}\,,\,C\right)\,, \\ Q_{1}(X,\,v) \leqslant & \, C(k) \left\{ \int\limits_{|x|>v} M\,(dx) + v^{-2}\,(\alpha_{1}^{1}+\beta_{1}^{1}\,(v))\right\}^{-1/2}, \quad x \in R_{k}, \\ Q_{1}(X,\,v) \leqslant & \, C(k) \left(\sup\limits_{u>v} \prod_{i=1}^{k} \frac{\alpha_{i}^{2}+\beta_{1}\,(u)}{u^{2}}\right)^{-1/2}. \end{split}$$

Из этих оценок легко вывести многомерный аналог одного результата В. Деблина (¹), повторенного также в (³).

Tеорема 8. Для того чтобы распределение безгранично делимого с.в. X с характеристической функцией (6) имело хотя бы одну точку роста, необходимо и достаточно выполнения условий

$$P(t) \equiv 0, \quad \int_{\mathbf{R}_{b}} M(dx) < \infty.$$

Вильнюсский государственный университет им. В. Капсукаса

Поступило 1 XII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ W. Doebllin, Bull. Soc. Math. France, 63, 23, 35 (1939). ² C. G. Esseen, Zs. Wahrscheinlichkeitstheorie, 5, 210 (1966). ³ G. G. Esseen, ibid., 9, 290 (1968). ⁴ A. Kolmogorov, Ann. Inst. H. Poincare, 16, 17 (1958). ⁵ H. Kesten, Math. Scandinavia, 25, 133 (1969). ⁶ P. Levy, Theorie de l'addition des variables aleatoires, Paris, 1954. ⁷ E. Lukacs, Multivariate Analysis—II, N. Y.—London, 1969. ⁸ B. Rosen, Ark. Math., 4, 323 (1961). ⁹ B. B. Сазонов, Теория вероятн. и ее примен., 11, 682 (1966). ¹⁰ Б. А. Севастьянов, Там же, 8, 124 (1963).