УДК 552.4:550.4:541.123

ПЕТРОГРАФИЯ

И. П. ИВАНОВ, В. Ф. ГУСЫНИН

ТОПОЛОГИЯ *T* — *P*-РАВНОВЕСИЙ В СИСТЕМЕ NaAlSiO₄ — SiO₂ — H₂O ПРИ ВЫСОКИХ ДАВЛЕНИЯХ ВОДЯНОГО ПАРА

(Представлено академиком Д. С. Коржинским 3 V 1971)

Система NaAlSiO₄ — SiO₂ — H₂O является одной из немногих систем, в которых достаточно полно исследованы фазовые равновесия при высоких давлениях водяного пара, включая области ликвидуса и субсолидуса. С разной степенью детальности в ней экспериментально изучены кривые плавления кварца (¹, ²), нефелина (¹, ³, ⁶), альбита (⁴), жадеита (⁶); эвтектические кривые кварц + альбит = расплав (⁴, ⁵, ⁶), кварц + жадеит = = расплав (⁶), альбит + нефелин = расплав (⁶, ⁹), альбит + анальцим = = расплав (⁶, ⁹) и кривая инконгруентного плавления апальцима по реакции: анальцим = нефелин + жидкость (⁶, ⁹). В области субсолидуса исследованы реакции дегидратации анальцима: анальцим = альбит + нефелин + H₂O (⁹⁻¹³), наши данные); анальцим = жадеит + H₂O (⁶, ¹³, ¹⁴) и твердофазовые реакции: альбит = кварц + жадеит (⁶, ¹⁵) и жадеит = = альбит + нефелин (⁶, ¹³, ¹⁵).

В исследуемой системе все эти равновесия, изученные разными авторами, могут быть представлены на единой T - P-диаграмме с учетом требований правила фаз. Предпринятую в последнее время в этом направлении попытку (⁶) нельзя считать успешной, так как авторы пе учли режим воды в эксперименте.

Рассмотрим T - P-равновесия в трехкомпонентной мультисистеме NaAlSiO₄ — SiO₂ — H₂O при условии, что давление в экспериментах задается водяным паром. В режиме опыта количество воды в реакторе находится в большом избытке против того количества ее, которое поглощается или выделяется в приведенных выше реакциях гидратации — дегидратации (включая образование расплавов, насыщенных водой). При таком режиме вода является избыточным инертным компонентом (¹⁶), и реакции гидратации — дегидратации в экспериментах должны протекать при максимальных значениях химического потенциала воды ($\mu_{d,0}$ = max), которые определяются температурой и общим давлением. Виртуальными инертными компонентами в системе являются компоненты NaAlSiO₁ и SiO₂, в отношении которых система является двухкомпонентной. В отношении компонента H₂O она эквипотенциальна. Следовательно, нонвариантные равновесия должны включать 4 фазы, моновариантные — 3 фазы и дивариантные — 2 фазы.

Топологическое исследование мультисистемы позволяет достаточно просто установить стабильные нонвавариантные точки и в первом приближении определить их координаты на общей T - P-диаграмме (точки пересечений экспериментальпо найденных моновариантных кривых). Построенная нами диаграмма состояния мультисистемы NaAlSiO₄ — SiO₂ — H_2O показана на рис. 1. Она полностью отвечает правилу фаз: $n_{T,P} = K_{nn} + 2 - \Phi = 4 - \Phi$, где n - число степеней свобод, $K_{nn} -$ число виртуальных инертных компонентов, Φ - число фаз в равновесии. На диаграмме, кроме экспериментально найденных моновариантных кривых, выявились новые кривые, показанные пунктиром, которые гребуют экспериментального подтверждения (Аб = Жд + Ж; ЖД = Аб + Ж; Ж = = Жд + Не; Ан + Не = Ж и Ан = Аб + Ж) *. Более детально соотношения ликвидуса, солидуса и субсолидуса в системе при разных давлениях показаны на разрезах температура — состав (рис. 2).

На диаграмме (рис. 1) обозначены поля стабильности всех твердых фаз, входящих в мультисистему. Кривые плавления кварца, нефелина, альбита и эвтектические кривые KB + A6 + u A6 + He имеют отрицательный наклон (dT/dP), причем наклон больше у тех кривых, которые связаны с плавлением твердых фаз с более высоким содержанием натрия. Для кривых плавления нефелина, альбита и эвтектики KB + A6 отрица-

Рис. 1. Общая Т — Р-диаграмма гиста и гариана и гариана и гариана и системы NaAlSiO₄ — SiO₂ — H₂O по экспериментальным данным ($^{1-15}$) при р_{Ш2}O — $P_{0.6m}$. Условные ообзначения: Кв — кварц, Аб — альбит, Ан — Кв — кварц, Ко — альона, ... анальцим, Жд — жадеит, Не — нефелин, Ж — расплав, насыщен-ный водой. 1—6 — нопвариантные точки. 1—VI — изобарические разрезы. Кружочками обозначены наши экспериментальные дапные. Реакции ликвидуса: Кв + $\begin{array}{l} +\mathrm{H}_{2}\mathrm{O}=\mathcal{K}, & \mathrm{He}+\mathrm{H}_{2}\mathrm{O}=\mathcal{K}, \\ \mathrm{A}\delta+\mathrm{H}_{2}\mathrm{O}=\mathcal{K}, & \mathcal{K}_{\mathrm{I}}+\mathrm{H}_{2}\mathrm{O}=\mathcal{K}, \end{array}$ $\Re_{\pi} + H_{2}O = A\delta + \Re, \quad A\delta + H_{2}O = H_{2}O + H_{2}O + H_{2}O = H_{2}O + H_{2}O = H_{2}O + H_{2}O + H_{2}O + H_{2}O = H_{2}O + H_{2}$ $A\delta +$ = He + \Re , AH + H₂O = A5 + \Re . $+ \mathrm{AH} + \mathrm{H}_2\mathrm{O} = \mathcal{K};$ AH + He + $+ H_2O = \mathcal{K}; \quad \mathcal{K}_{\mathcal{I}} + He + H_2O =$ = Ж. Реакции субсолидуса: $2AH = A\delta + He + 2H_2O;$ AH == \Re _d + H₂O; \Re _b + \Re _d = A6

тельный наклон сохраняется вплоть до давлений 15—17 кбар (кривая плавления альбита ограничивается нонвариантной точкой 5, а эвтектика кварц + альбит — понвариантной точкой 6).

Кривые плавления жадеита и эвтектики кварц + жадеит, выходящие соответственно из понвариантных точек 5 и 6, наоборот, имеют положительный паклон. Переход от кривых с отрицательным наклоном к кривым с положительным наклоном в нопвариантных точках 5 и 6 связан с тем, что в области более высоких давлений альбит становится неустойчивым и вместо него стабильной оказывается более плотная фаза — жадеит.

Верхний предел устойчивости анальцима в интервале $p_{\rm H_2O} = P_{\rm ofm} = 5-10$ кбар ограничивается его инконгруентным плавлением (Ан = He + Ж; Ан = Аб + Ж). При построении этой границы было принято, что изменение состава перитектической жидкости в сторону нефелина (⁹) продолжается и при $p_{\rm H_2O} > 10$ кбар. Однако этот вопрос требует специальной экспериментальной проверки. Правая граница поля анальцима (монограничная линия Ан = Жд + H₂O), неоднократно проверенная экспериментально, имеет наклон, не свойственный для реакций гидратации – дегидратации в области субсолидуса (с увеличением $p_{\rm H_2O}$ расширяется поле стабильности безводной фазы). Это связано с большой разностью между мольными объемами анальцима и жадеита ($V_{\rm AH} = 96,0$ см³/моль, $V_{\pi_{\rm A}} - 60.5$ см³/моль; $V_{\rm H_2O} = 15.7 - 17.6$ см³/моль; для 100° $p_{\rm H_2O} = 7$ кбар, а для 400° $p_{\rm H_2O} = 9$ кбар).

Представленная нами общая T - P-диаграмма системы NaAlSiO₄ - $-SiO_2 - H_2O$ (рис. 1) весьма существенно отличается от общей T - P-

^{*} Символы фаз расшифрованы в подписи к рис. 1.

диаграммы, приведенной в работе (⁶), где H_2O рассматривается как виртуальный компонент ($n = K + 2 - \Phi = 5 - \Phi$). Так, на нашей диаграмме отсутствует моновариантная линия твердофазовой реакции Жд = = A6 + He. Линия A6 = KB + Жд не заходит выше линий ликвидуса A6 = Ж и Жд = Ж, поля анальцима и жадепта не перекрываются между собой. В области субсолидуса поле анальцима не выходит за пределы

Рис. 2. Изобарические разрезы диаграммы рис. 1. Обозначения аналогичны рис. 1. Изобарические разрезы: I — 3; II — 8; III — 11,3; IV — 13; V — 16; VI — 20 кбар

поля альбита при высоких давлениях. Наша диаграмма имеет более простую топологию.

Из анализа рис. 1 и2 следует:

Диаграммы позволяют оценить максимальный эффект понижения температуры ликвидуса и солидуса в системе с избытком воды по сравнению с «сухой» системой (Bell, Roseboom, 1964—1965). Так, при $p_{\rm H_2O} = P_{\rm ofm} =$ = 15 кбар температура плавления альбита понижается на 610°, эвтектики кварц + альбит — на 580°. Для природных реакций, в которых $p_{\rm H_2O} < < P_{\rm ofm}$ понижение температуры должно быть меньше указанных значений и зависеть от парциального давления воды.

Кривая плавления альбита и эвтектика кварц + альбит, имеющие на T - P-диаграмме отрицательный наклон, не проходят через минимум (dT/dp = 0) вплоть до $p_{\Pi_2 0} = 15 - 17$ кбар. Это позволяет заключить, что в пределах земной коры с увеличением глубины вода должна более эффективно понижать температуру плавления и кристаллизации гранитной магмы. Положение кривых ликвидуса и солидуса на рис. 1 и 2 показывает, что щелочная магма должна кристаллизоваться при более низких температурах, чем гранитная.

Из экспериментов следует, что анальцим может образоваться в процессе кристаллизации щелочной магмы на глубинах порядка 20—30 км только при допущении, что там должно иметь место высокое парциальное давление водяного пара ($\mu_{\rm H_2O} = \max$).

Институт	эксперимен	нтальной	минералогии
	Академии	наук ССС	CP
ι	Терноголов	ка Моск.	обл.

Поступило 16 IV 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ H. S. Yoder, Carnegie Inst. Wash. Year Book, **57**, 189 (1958). ² G. C. Kennedy, G. J. Wasserburg et al., Am. J. Sci., **260**, 501 (1962). ³ Y. W. Greig, F. F. W. Barth, Am. J. Sci., 5 th Ser., **35-A**, 93 (1938). ⁴ O. F. Tuttle, N. L. Bowen, Geol. Soc. Am. Mem., **74**, 153 (1958). ⁵ W. C. Luth, R. H. Yahns, O. F. Tuttle, J. Geophys. Res., **69**, 759 (1964). ⁶ A. L. Boettcher, P. Y. Wyllie, Am. J. Sci., **267**, 875 (1969). ⁷ R. W. Goranson, Am. J. Sci., 5th Ser., **35-A**, 71 (1938). ⁸ C. W. Burham, R. H. Yahns, Am. J. Sci., **260**, 721 (1962). ⁹ T. Peters, W. C. Luth, O. F. Tuttle, Am. Min., **51**, 736 (1966). ¹⁰ P. Saha, Am. Mineral., **46**, 859 (1961). ¹¹ L. B. Sand, R. Roy, E. F. Osborn, Econ. Geol., **52**, 169 (1957). ¹² H. S. Yoder, Carnegie Inst. Wash. Year Book, **53**, 121 (1953—1954). ¹³ M. S. Newton, G. C. Kennedy, Am. J. Sci., **266**, № 8 (1968). ¹⁴ D. T. Griggs, G. C. Kennedy, Am. J. Sci., **255**, 722 (1956). ¹⁵ M. H. Manghani, Phys. of the Earth and Planetary Interiors, **3**, 1970. ¹⁶ Д. С. Коржинский, Физико-химические основы анализа парагенезиcoв минералов, Изд. AH CCCP, 1957.