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On two sublattices of the subgroup lattice
of a finite group
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Abstract. Let % be a non-empty class of groups, let G be a finite group and let £(G)
be the lattice of all subgroups of G. A chief H/K factor of G is &-central in G if
(H/K) % (G/Cg(H/K)) € &. Let £.%(G) be the set of all subgroups A of G such that
every chief factor H/K of G between Ag and A% is §-central in G; £%(G) denotes the
set of all subgroups A of G with A%/Ag € %. We prove that the set £¢%(G) and, in the
case when  is a Fitting formation, the set £g(G) are sublattices of the lattice £(G).
We also study conditions under which the lattice £, (G) and the lattice of all subnormal
subgroup of G are modular.

1 Introduction

Throughout this paper, all groups are finite, and G always denotes a finite group.
Moreover, £(G) denotes the lattice of all subgroups of G; £,(G) is the lattice of
all normal subgroups of G; £,(G) denotes the lattice of all subnormal subgroups
of G. If n is an integer, the symbol 7z (n) denotes the set of all primes dividing 7;
as usual, 7(G) = 7 (|G|), the set of all primes dividing the order of G; C,, de-
notes a cyclic group of order n. We use Jt, ™, U and & to denote the classes of
all nilpotent, of all quasinilpotent, of all supersoluble and of all soluble groups,
respectively.

In what follows,  is a class of groups containing all identity groups; G& de-
notes the intersection of all normal subgroups N of G with G/N € §&; Gg is the
product of all normal subgroups N of G with N € . The class % is said to be
a formation if, for every group G, every homomorphic image of G/G% belongs
to & and a Fitting formation if & is a formation such that, for every group G, every
normal subgroup of Gg belongs to . The formation  is said to be saturated
if G € & whenever G¥ < ®(G) and (normally) hereditary if H € & whenever
H < G € % (respectively whenever H < G € §).

Research of the first author is supported by China Scholarship Council and NNSF of China
(11771409).



1036 Z. Chi and A.N. Skiba

Note, in passing, that N, N* and & are Fitting formations, and 9¢, U and © are
hereditary saturated formations [2].

If K < H are normal subgroups of G and C < Cg(H/K), then one can form
the semidirect product (H/K) x (G/C) putting

(hK)8€ = g7'hgK forall hK € H/K and gC € G/C.
We say, following [10], that a chief H/K factor of G is §-central in G if
(H/K) % (G/Cg(H/K)) € &.

In this paper, we deal with the following two sets of subgroups of G: £.%(G)
is the set of all subgroups A of G such that every chief factor H/K of G between
Ag and A9 is &-central in G; £%(G) denotes the set of all subgroups A of G
with A9 /Ag € F.

Before continuing, consider some well-known examples.

Example 1.1. (i) A subgroup A of G is said to be quasinormal or permutable
(respectively S-quasinormal or S-permutable [1,5]) in G if A permutes with all
subgroups (respectively with all Sylow subgroups) H of G, thatis, AH = HA.
In view of [8] (see also [1, Corollary 1.5.6]), every quasinormal subgroup of G
belongs to £.9(G). On the other hand, in view of the results of Kegel [7] and
Deskins [3] (see also [1, Theorem 1.2.17]), every S-permutable subgroup of G
belongs to £y (G).

(i1) A subgroup M of G is called modular if M is a modular element (in the
sense of Kurosh [9, p. 43]) of the lattice £(G) of all subgroups of G, that is,

@@ (X.MNZ)=(X.M)NZforall X <G, Z < G such that X < Z,
(b) (M.YNZ)=(MY)NZforallY <G, Z <G suchthat M < Z.

In view of [9, Theorem 5.2.5], every modular subgroup of G belongs to £11(G).

(iii) Let G = (C7 x Aut(C7)) x A5 x P, where As is an alternating group of
degree 5 and P is a non-abelian group of order p3 and exponent p for some prime
p > 2. Let A be a subgroup of Aut(C7) of order 2. Then A is not modular in G,
but A € £.11(G) since every chief factor of G below A9 = C;7 x A is cyclic. Now
let L be a subgroup of P of order p with L £ Z(P). Then L is not quasinormal
in P, so L is not quasinormal in G, but L € £.9;(G) since, for every chief factor
H/K of G below LY = P, we have Cg(H/K) = G.

(iv) Let G = (A5 C7) x A4 = (K x C7) X A4, where K is the base group of
the regular wreath product As ¢ C7 and A5 and A4 are the alternating groups of
degree 5 and 4, respectively. Let L be the first copy of As in K. Then L is sub-
normal in G, but L ¢ £9(G). Finally, if Z is a subgroup of order 2 in A4 and
H = (KC7)Z, then the subgroup H is not S-quasinormal in G, but H € £5(G).
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It is well known that the set of all quasinormal subgroups and the set of all
modular subgroups do not form sublattices of the lattice £(G). Nevertheless, our
first result shows that the set &£.5 (G) and the set £ .11 (G) are sublattices of £(G).

Theorem 1.2. The set £ .%(G) and, in the case when  is a Fitting formation, the
set £%(G) are sublattices of the lattice £(G).

Applying the lattice £+ (G), we can give permutable conditions under which
the lattice £,(G) is modular.

Theorem 1.3. The lattice L£,(G) is modular if and only if, for every two sub-
normal subgroups L < T of G, where L € Ly«(T), L permutes with every sub-
normal subgroup M of T, that is, LM = ML.

Finally, we describe the conditions under which the lattice £.9;(G) is modular
or distributive.

Theorem 1.4. The following statements hold:

(1) The lattice L. (G) is modular if and only if two subgroups A, B € L.qn(G)
permute.

(i) The lattice £, 3 (G) is distributive if and only if L0 (G) = £,(G) is dis-
tributive.

2 Proof of Theorem 1.2

Let D = M x A and R = N x B. Then the pairs (M, A) and (N, B) are said to
be equivalent provided there are isomorphisms f: M — N and g: A — B such
that f(a"'ma) = g(a™"') f(m)g(a) forallm € M and a € A.

In fact, the following lemma is known (see for example [10, Lemma 3.27]), and
it can be proved by direct verification.

Lemma 2.1. Let D = M x A and R = N x B. If the pairs (M, A) and (N, B)
are equivalent, then D ~ R.

Lemma 2.2. Let N, M and K < H < G be normal subgroups of G, where H/ K
is a chief factor of G.

(1) If N < K, then

(H/K)x(G/Cg(H/K)) =~ ((H/N)/(K/N))
X ((G/N)/Cq/n((H/N)/(K/N))).
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(2) If T/L is a chief factor of G and H/ K and T/ L are G-isomorphic, then

Co(H/K) = Cg(T/L),
(H/K)»(G/Cc(H/K)) ~(T/L) % (G/Cc(T/L)).

3) (MN/N)x(G/Cg(MN/N)) ~ (M/M NN)x(G/Cg(M/M N N)).
Proof. (1) In view of the G-isomorphisms H/K ~ (H/N)/(K/N) and

G/Ce(H/K) ~ (G/N)/(Cc(H/K)/N)
~ (G/N)/(C/n((H/N)/(K/N))),

the pairs
(H/K.G/Cg(H/K)),
(H/N)/(K/N).(G/N)/Cg/n((H/N)/(K/N)))
are equivalent. Hence statement (1) is a corollary of Lemma 2.1.
(2) A direct check shows that C = Cg(H/K) = Cg(T/L) and that the pairs
(H/K,G/C)and (T/L,G/C) are equivalent. Hence statement (2) is also a corol-

lary of Lemma 2.1.
(3) This follows from the G-isomorphism M N/N ~M /M NN and part (2). o

Lemma 23.Let K < H, K<V, W <V and N < H be normal subgroups
of G. Suppose that every chief factor of G between K and H is &-central in G.

(1) Ifevery chief factor of G between N and H is %-central in G, then every chief
factor G between K N N and H is &-central in G.

(2) If every chief factor of G between K and V' is §-central in G, then every chief
factor G between K and HV is §-central in G.

(3) If every chief factor of G between K and KN is §-central in G, then every
chief factor G between K N N and N is §-central in G.

(4) If every chief factor of G between W and V' is §-central in G, then every chief
factor G between K N W and H NV is §-central in G.

(5) Ifevery chief factor of G between W and V is &-central in G, then every chief
factor G between KW and HV is &-central in G.

Proof. (1) In view of Lemma 2.2 (1), we can assume without loss of generality
that K NN = 1. Let T/L be any chief factor of G below H. First suppose that
T NK < L. From the G-isomorphism K7/KL ~T/L(T N K)=T/L and
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Lemma 2.1 (2), we get that 7'/ L is &-central in G. Now assume that 7 N K £ L.
Then T = L(T N K), and so, from the G-isomorphism

T/L = L(T NK)/L ~ (T NK)/(LNK),

we get that (T N K)/(L N K) is a chief factor of G, and this factor is G-iso-
morphic with (7 N K)N/(L N K)N since (T N K) N N = 1. Thus both G-iso-
morphic factors T/L and (T N K)N/(L N K)N are ®-central in G by Lemma
2.2 (2) since every chief factor of G between N and H is ¥-central in G by hy-
pothesis. Therefore, we have (1).

(2) We can assume without loss of generality that K = 1. Let T/ L be any chief
factorof G suchthat H < L < T < HV.Then T = L(T N V), and so, from the
G-isomorphism 7/L = L(T NV)/L ~ (T NV)/(LNV) and Lemma 2.2 (2),
we get that T'/L is &-central in G since every chief factor of G between K = 1
and V is §&-central in G by hypothesis. Therefore, there is a chief series of G
with F-central in HV, so we have (2) by the Jordan—Holder theorem for the chief
series.

B)Let KNN =Nyg< Ny <---<N;—1 <N; =N be a chief series of G
between K N N and N. Then, from the G-isomorphism

NiK/Ni—1K ~ N;/N; N Ni—1 K = N;/Ni—1(N; N K)
= Ni/Ni-1,
it follows that K = KNog < KN; <--- < KN;—1 < KN; = KN is achief series
of G between K and KN . Therefore, in view of the Jordan—-Holder theorem for
the chief series and Lemma 2.2 (2), statement (3) is true.
(4) This follows from the G-isomorphisms
(HNV)/(KNV)~(HNV)K/K,
(VNH)(WNnH)~(VNH)W/W
and part (1).
5)As HV/KW = (HKW/KW)(VKW/K W), statement (5) follows from
Lemma 2.2, the G-isomorphisms
HKW/KW ~H/HNKW =H/K(HNW)
~ (H/K)/(K(H N W)/K),
VKW/KW ~ (V/W)/(WV NK)/W)

and part (2). O
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Proof of Theorem 1.2. Let A and B be subgroups of G such that 4, B € £.%(G)
(respectively A, B € £%(G)). Then every chief factor of G between Ag and AC
is &-central in G (then, respectively, AC /Ag € &). Therefore, in view of the
G-isomorphisms

A%(AgBg)/AgBg ~ A°/(A° N A Bg) = A°/AG(A° N Bg)
~ (A9 /Ag)/(A6(A° N Bg)/Ag).

we get that every chief factor of G between Ag Bg and A% (4 Bg) is §-central
in G (respectively, we get that A9 (AgBg)/AgBg € & since % is closed un-
der taking homomorphic images). Similarly, we can get that every chief factor
of G between Ag Bg and BG(AG Bg) is §-central in G (respectively, we get that
B%(Ag Bg)/Ag Bg € §). Moreover,

ASBC%/AGBg = (A%(A6 Bg)/AG Bs)(B% (A6 Bg)/Ac Ba),

and so every chief factor of G between Ag Bg and A° BY is §-central in G by
Lemma 2.3 (2) (respectively, we have A9 B¢ /AgBg € §& since % is a Fitting
formation).

Next note that (4, BY? = A9 BY and Ag Bg < (A, B)g. So every chief factor
of G between (A, B)g and (A, B)G = A9BG is F-central in G (respectively,
we get that (4, B)C/(A, B)g € & since &% is closed under taking homomorphic
images). Hence (A, B) € £.%(G) (respectively (A, B) € £x(G)).

Now note that (A N B)g = Ag N Bg. On the other hand, from the G-isomor-
phism

(A° N BY9) /(A6 N B9) = (4° N B9) /(4 N B® N 4%)
~ Ag(BS N A%)/4g < A9/ Ag,

we get that every chief factor of G between Ag N BY and A9 N BY is &-central
in G by Lemma 2.3 (5) (respectively, we get that (A N B®)/(Ag N B®) € &
since ¥ is closed under taking normal subgroups). Similarly, we get that every
chief factor of G between Bg N A% and BC N A€ is F-central in G (respectively,
we have (B9 N A9)/(Bg N A9) € &). But then we get that every chief factor
of G between (Ag N BY) N (Bg N A%) = Ag N Bg and A% N BE is &-central
in G by Lemma 2.3 (3) (respectively, we get that (A9 N BY)/(4g N Bg) € &
since ¥ is a formation). It is clear also that (4 N B)S < A% N BY. Therefore,
every chief factor of G between (4 N B)g = Ag N Bg and (A N B) is §-cen-
tral in G (respectively, we get that (A N B)¢ /(AN B)g € &). Therefore, we
have AN B € £.%(G) (respectively AN B € £g(G)). Hence the set £.%(G)
(respectively the set £ (G)) is a sublattice of the lattice £(G). |
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3 Proofs of Theorems 1.3 and 1.4

We use Z(G) to denote the product of all normal subgroups A of G such that
either A =1 or every chief factor of G below A is F-central in G. In view of
Lemma 2.3 (2), every chief factor G below Zg(G) is F-central in G.

Lemma 3.1. Let A € £.%(G), and let N and E be subgroups of G, where N is
normal in G.

(1) If L < T are normal subgroups of G such that all chief factors of G between
L and T are §-central in G, then £(T /L) is isomorphic to the interval [T, L]
in£.x(G).

(2) AN/N € £.%(G/N).

(3) IfH/N € £.%(G/N), then H € £ .%(G).

4) £.x(G/N) is isomorphic to the interval [G/N] in £ %(G).

(5) If & is a hereditary saturated formation, then AN E € £ x(E).

(6) If & is a normally hereditary saturated formation and E is subnormal in G,
then ANE € £ .x(E).

Proof. (1) This statement follows from the fact that, for every subgroup H of G
with L < H < T,wehave L < Hgand HY < T.
(2) From the G-isomorphisms

(A°N/N)/(AGN/N) =~ (A% /Ag)/(Ac(A° N N)/Ag)

and Lemma 2.2, we get that every chief factor of G/N between AgN/N and
A9 N/N is -central in G since every chief factor of G between Ag and AC is
&-central in G by hypothesis. On the other hand, we have

(AN/N)9/N = (AN)S /N = ASN/N and AGN/N < (AN/N)g/n-

Hence every chief factor of G between (AN/N)g/n and (AN/N YO/N s F-cen-
tralin G/N,so AN/N € £.%(G/N).
(3) This follows from the G -isomorphism

HS/Hg ~ (H®/N)/(Hg/N) = (H/N)'N /(H/N)g/n .

(4) This follows from parts (2) and (3).
(5) First note that, by [5, Chapter 1, Theorem 2.7 (a)],

(A%/AG) N (EAG/Ac) = Ag(A° N E)/Ac < Zzx(EAG/AcG)
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since, by hypothesis, we have 4%/4g < Z%(G/Ag). On the other hand, we
have f(Zg;(EAG/AG)) = Zg(E/E N Ag), where f: EAg/Ag — E/E N Ag
is the canonical isomorphism from EAg/Ag onto E/E N Ag. Hence
f(46(A° N E)/Ag) = (A° N E)/(4g N E) < Zgx(E/Ag N E),
where AgNE <(ANE)g <ANE<(ANE)E < A9 N E, andso
(ANE)/(ANE)g < Zg(E/(AN E)E).

Hence AN E € £ .x(E).

(6) See the proof of (5). O
Lemma 3.2. Suppose that § is a Fitting formation. Let A € £%(G), and let N
and E be subgroups of G, where N is normal in G.

(1) If L < T are normal subgroups of G such that T/L € &, then £(T/L) is
isomorphic to the interval [T, L] in £%(G).

(2) AN/N € £%(G/N).

(3) IfH/N € £%(G/N), then H € £x(G).

(4) £%(G/N) is isomorphic to the interval [G/N] in £gx(G).

(5) If & is hereditary, then AN E € £x(E).

(6) If E is subnormal in G, then AN E € £g(E).

Proof. Statements (1), (2), (3) and (4) can be proved similarly to statements (1),

(2), (3) and (4) of Lemma 3.1, respectively.
(5) First note that

(A%/A6) N (EAG/Ac) = Ag(A° N E)/Ag < (EAG/AG)z

since & is hereditary and we have A% /Ag € (G/ Ag)g by hypothesis. On the
other hand, we have

f((EAG/Ac)g) = (E/E N Ag)g,

where f: EAg/Ag — E/E N Ag is the canonical isomorphism from EAg/Ag
onto E/E N Ag. Hence

f(Ag(A° N E)/Ag) = (A° N E)/(Ag N E) < (E/Ag N E)g,
where A NE < (ANE)E <ANE <(ANE)E <49 N E,andso
(ANEE/(ANE)E <(E/(ANE)E)z.

Hence AN E € £x(E).
(6) See the proof of (5). O
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In fact, the following lemma is known.

Lemma 3.3. Let A be a subnormal subgroup of G.
(1) If Ais a p-group, then A < Op(G).
(2) If |G : Al is a power of p, then G/Ag is a p-group.

Proof. There is a subgroup chain
A=Ay <A1 <---ZA4,=6G

such that A;—y < A; foralli = 1,...,n. We can assume without loss of general-
itythat M = A,—1 <G.

(1) By induction, we have that A < O,(M). On the other hand, the subgroup
Op(M) isnormal in G since it is characteristic in M, so O, (M) < O,(G). Hence
we have (1).

(2) It is enough to show that, for every p’-element x of G, we have x € A. But,
since evidently |G : M | is a power of p, x € M, so we have x € A by induction. O

Lemma 3.4 (Wielandt [11]). If A = A’ is a perfect subnormal subgroup of G, then
AB = BA for all subnormal subgroups B of G.

Proof of Theorem 1.4. (i) First suppose that the lattice £.5(G) is modular. We
show that, in this case, every pair of subgroups A, B € £.0(G) is permutable.
Suppose that this is false, and let G be a counterexample with |G| + |A| + | B|
minimal. Then AB # BA, but A1B, = BjA; forall Ay < A and B; < B such
that Ay, By € £.9(G) and either Ay < Aor B; < B.

(1) AN/N,BN/N € £.9:(G/N) for every normal subgroup N of G. (This
follows from Lemma 3.1 (2).)

2) £:0(G/N) is isomorphic to the interval [G/N] in L.01(G). Hence the
lattice £.9:(G/N) is modular. (This follows from Lemma 3.1 (4).)

(3) RAB isasubgroup of G for every minimal normal subgroup R of G. Hence
Ag =1 = Bg.

By claim (1), we have AR/R, BR/R € £.9(G/R), so the choice of G and
claim (2) imply that

(AR/R)(BR/R) = (BR/R)(AR/R) = RAB/R

is a subgroup of G. Therefore, since AB # BA, it follows that Ag = 1 = Bg.
(4) Let V.= A9BC. Then V < Zoo(G) and the lattice £(V) is a sublattice in
Len(G).
Indeed, claim (3) and Lemma 2.3 (2) imply that V' < Z,(G). Hence, for every
subgroup H < V, we have H € £.9(G). Hence claim (4) holds.
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The final contradiction for the necessity. Claim (4) implies that V' is nilpotent
and the lattice £(V') of all subgroups of V is modular. Let 7 (V) = {p1,..., pt},
and let respectively P;, A; and B; be the Sylow p;-subgroups of V', A and B for all
i=1,...,t. Then A; < P; and B; < P; foralli and j.Hence A; B; = B; A; for
all i # j since [P;, P;] = 1. Itis clear also that £(P;) is a sublattice in £.0(G),
so L£(P;) is modular too. But then A; B; = B; A; for all i by [9, Lemma 2.3.2], so

AB = (A; X -+- X Af)(By X -+ X By)
= (B; X+ X By)(A1 x--- x A;) = BA,

contrary to the choice of (G, A, B). The necessity of the condition of the theorem
is proved.

Sufficiency. This follows from the fact that if, for the subgroups A < H and B
of G, wehave AB = BA,then H N (A, B) = (A, H N B).

(ii) The sufficiency is evident. Now suppose that the lattice &£.9;(G) is distribu-
tive. Then, for every subgroup A € £.5(G), the lattice £(A% /Ag) is a sublattice
in £.0(G) by Lemma 3.1 (1), so £(4%/Ag) is distributive. Hence A9 /Ag is
cyclic by the Ore theorem [9, Theorem 1.2.3]. Hence A/Ag is normal in G/Ag.
Therefore, £.90:(G) = £, (G) is distributive. |

Proof of Theorem 1.3. First note that, by [6, X, Lemma 13.3 and Corollary 13.11],
N* is a Fitting formation.

Necessity. Suppose that this is false, and let G be a counterexample with sub-
normal subgroups L, B < T, where

LeZfp(T) and LB # BL,

for which |G| + |L| is minimal. Therefore, for every proper subnormal subgroup
Vof L with V € £q+(T), we have VB = BV.

(1) (L,B) =G.HenceT =G.

Assume that (L, B) < G. The subgroup (L, B) is subnormal in G by [4, Chap-
ter A, Section 14.4]. Hence the lattice £,({(L, B)) is modular since it is a sub-
lattice of the lattice £,(G). Moreover, Lemma 3.2 (6) implies L € Lq+((L, B)).
Hence the choice of G implies that L B = BL, a contradiction. Hence we have
T=(L,B)=0G.

2) Lg =1= Bg.

Indeed, suppose that, for some minimal normal subgroup N of G, we have
either N < L or N < B. It is clear that the lattice £s,(G/N) is isomorphic to
the interval [G/N] in the modular lattice £4,(G). Hence £,(G/N) is modular.
Moreover, LN/N and BN/ N are subnormal subgroups of G/ N by [4, Chapter A,
Section 14.1]. On the other hand, Lemma 3.2 (2) and claim (1) imply that

LN/N € £3+(G/N) = £q+(T/N).
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Therefore, the choice of G implies that
LB/N = (LN/N)(BN/N)= (BN/N)(LN/N) = BL/N,

so L B = BL. This contradiction shows that L = 1 = Bg.

(3) L isa p-group for some prime p.

First note that LG ~ L€ /Lg is quasinilpotent since T = G, Lg = 1 and
L € £+ (T) = L9+ (G) by claims (1) and (2). Therefore, for every proper sub-
normal subgroup V of L, we have V € £p«(T),so VB = BV . Since LB # BL,
it follows that L has a normal subgroup W such that L /W is simple and every
proper subnormal subgroup of L is contained in W.

By [6, Chapter X, Theorem 13.6], either L/F(L) = Ay x --- X A; for some
non-abelian simple groups Ay,...,A; or L = F(L) is nilpotent. In the former
case, we have t = 1 and W = F(L), so L = L/ is perfect, and hence LB = BL
by Lemma 3.4. Therefore, we have the second case, so L is a cyclic p-group for
some prime p.

(4) G = O0p(G)B. (Since L is a subnormal p-subgroup of G by claim (3), this
follows from Lemma 3.3 (1) and claim (1).)

The final contradiction for the necessity. Since B is subnormal in G and |G : B|
is a power of p by claim (4), G/Bg is a p-group by Lemma 3.3 (2). But then G is
a p-group by claim (2). Hence £(G) = £4,(G) is modular. Therefore, LB = BL
by [9, Lemma 2.3.2]. This contradiction completes the proof of the necessity.

Sufficiency. Suppose that this is false, and let G be a counterexample of mini-
mal order. The hypothesis holds for every proper subnormal subgroup V' of G, so
the lattice £,(V') is modular by the choice of G.

First we show that the lattice £, (G) is upper semimodular. In view of [9, p. 46],
it is enough to show that if A, B € £4,(G) such that A and B cover AN B in
£ (G), then (A, B) covers A in £4,(G). Assume that this is false.

(1) G = (A4, B).

Suppose that (4, B) < G. Then the lattice £4,({A, B)) is modular. Hence this
lattice is upper semimodular by [9, Theorem 2.1.10], so (A, B) covers A, a con-
tradiction. Hence we have (1).

(2) AB # BA.

Indeed, if AB = BA, then G = AB by claim (1). Hence, for every subgroup
T € £4(G) satistying A < T < G, we have

T =A(TNB) andeither TNB=B or ANB=TNBA.

But then, in the former case, we have T = A(T N B) = A(AN B) = A. In the
second case, wehave T = G.Hence G = (A, B) covers A, a contradiction. Hence
we have (2).
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(3) AN B = 1. Hence A and B are minimal subnormal subgroups of G.

Let N = AN B. We show that N = 1. Suppose that N # 1. Note that, in view
of claim (1), G = (A, B) < Ng(N) since A and B cover N in £4,(G). Now let
L/N, B/N and T/N be subnormal subgroups of G/N such that

L/N.B/N <T/N and L/N € £q+(T/N).

Then L, B and T are subnormal subgroups of G suchthat B <7 and L € £q+(T)
by Lemma 3.2 (3). Then L B = BL by hypothesis, so

(L/N)(B/N) = (B/N)(L/N).

Hence the hypothesis holds for G/N, so the lattice £5,(G/N) is modular by
the choice of G. Therefore, G/N = (A, B)/N covers A/N in £4,(G/N), and
hence G = (A4, B) covers A in £5,(G). This contradiction shows that N = 1, so
A and B are minimal subnormal subgroups of G.

The final contradiction for the sufficiency. In view of claim (3), A and B are
simple groups. If A = A’ is perfect, then AB = BA by Lemma 3.4, contrary to
claim (2). Hence A is abelian, so A < O,(G) for some prime p, which implies
that A € £q+(G). But then AB = BA by hypothesis. This contradiction shows
that the lattice £4,(G) is upper semimodular. On the other hand, this lattice is
lower semimodular by [9, Theorem 2.1.8]. From [9, Theorem 2.1.10], we get now
that the lattice £4,(G) is modular, contrary to the choice of G. Therefore, the
sufficiency of the condition of the theorem is true. o
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