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On two sublattices of the subgroup lattice
of a finite group
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Abstract. Let F be a non-empty class of groups, let G be a finite group and let L.G/

be the lattice of all subgroups of G. A chief H=K factor of G is F-central in G if
.H=K/ Ì .G=CG.H=K// 2 F. Let LcF.G/ be the set of all subgroups A of G such that
every chief factor H=K of G between AG and AG is F-central in G; LF.G/ denotes the
set of all subgroups A of G with AG=AG 2 F. We prove that the set LcF.G/ and, in the
case when F is a Fitting formation, the set LF.G/ are sublattices of the lattice L.G/.
We also study conditions under which the lattice LcN.G/ and the lattice of all subnormal
subgroup of G are modular.

1 Introduction

Throughout this paper, all groups are finite, and G always denotes a finite group.
Moreover, L.G/ denotes the lattice of all subgroups of G; Ln.G/ is the lattice of
all normal subgroups of G; Lsn.G/ denotes the lattice of all subnormal subgroups
of G. If n is an integer, the symbol �.n/ denotes the set of all primes dividing n;
as usual, �.G/ D �.jGj/, the set of all primes dividing the order of G; Cn de-
notes a cyclic group of order n. We use N, N�, U and S to denote the classes of
all nilpotent, of all quasinilpotent, of all supersoluble and of all soluble groups,
respectively.

In what follows, F is a class of groups containing all identity groups; GF de-
notes the intersection of all normal subgroups N of G with G=N 2 F; GF is the
product of all normal subgroups N of G with N 2 F. The class F is said to be
a formation if, for every group G, every homomorphic image of G=GF belongs
to F and a Fitting formation if F is a formation such that, for every groupG, every
normal subgroup of GF belongs to F. The formation F is said to be saturated
if G 2 F whenever GF � ˆ.G/ and (normally) hereditary if H 2 F whenever
H � G 2 F (respectively whenever H E G 2 F).
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Note, in passing, that N, N� and S are Fitting formations, and N, U and S are
hereditary saturated formations [2].

If K � H are normal subgroups of G and C � CG.H=K/, then one can form
the semidirect product .H=K/ Ì .G=C/ putting

.hK/gC
D g�1hgK for all hK 2 H=K and gC 2 G=C:

We say, following [10], that a chief H=K factor of G is F-central in G if

.H=K/ Ì .G=CG.H=K// 2 F:

In this paper, we deal with the following two sets of subgroups of G: LcF.G/

is the set of all subgroups A of G such that every chief factor H=K of G between
AG and AG is F-central in G; LF.G/ denotes the set of all subgroups A of G
with AG=AG 2 F.

Before continuing, consider some well-known examples.

Example 1.1. (i) A subgroup A of G is said to be quasinormal or permutable
(respectively S -quasinormal or S -permutable [1, 5]) in G if A permutes with all
subgroups (respectively with all Sylow subgroups) H of G, that is, AH D HA.
In view of [8] (see also [1, Corollary 1.5.6]), every quasinormal subgroup of G
belongs to LcN.G/. On the other hand, in view of the results of Kegel [7] and
Deskins [3] (see also [1, Theorem 1.2.17]), every S -permutable subgroup of G
belongs to LN.G/.

(ii) A subgroup M of G is called modular if M is a modular element (in the
sense of Kurosh [9, p. 43]) of the lattice L.G/ of all subgroups of G, that is,

(a) hX;M \Zi D hX;M i \Z for all X � G, Z � G such that X � Z,

(b) hM;Y \Zi D hM;Y i \Z for all Y � G, Z � G such that M � Z.

In view of [9, Theorem 5.2.5], every modular subgroup of G belongs to LcU.G/.
(iii) Let G D .C7 Ì Aut.C7// � A5 � P , where A5 is an alternating group of

degree 5 and P is a non-abelian group of order p3 and exponent p for some prime
p > 2. Let A be a subgroup of Aut.C7/ of order 2. Then A is not modular in G,
butA 2 LcU.G/ since every chief factor ofG belowAG D C7 Ì A is cyclic. Now
let L be a subgroup of P of order p with L — Z.P /. Then L is not quasinormal
in P , so L is not quasinormal in G, but L 2 LcN.G/ since, for every chief factor
H=K of G below LG D P , we have CG.H=K/ D G.

(iv) Let G D .A5 o C7/ � A4 D .K Ì C7/ � A4, where K is the base group of
the regular wreath product A5 o C7 and A5 and A4 are the alternating groups of
degree 5 and 4, respectively. Let L be the first copy of A5 in K. Then L is sub-
normal in G, but L … LN.G/. Finally, if Z is a subgroup of order 2 in A4 and
H D .KC7/Z, then the subgroupH is not S -quasinormal inG, butH 2 LN.G/.
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It is well known that the set of all quasinormal subgroups and the set of all
modular subgroups do not form sublattices of the lattice L.G/. Nevertheless, our
first result shows that the set LcN.G/ and the set LcU.G/ are sublattices of L.G/.

Theorem 1.2. The set LcF.G/ and, in the case when F is a Fitting formation, the
set LF.G/ are sublattices of the lattice L.G/.

Applying the lattice LN�.G/, we can give permutable conditions under which
the lattice Lsn.G/ is modular.

Theorem 1.3. The lattice Lsn.G/ is modular if and only if, for every two sub-
normal subgroups L � T of G, where L 2 LN�.T /, L permutes with every sub-
normal subgroup M of T , that is, LM DML.

Finally, we describe the conditions under which the lattice LcN.G/ is modular
or distributive.

Theorem 1.4. The following statements hold:

(i) The lattice LcN.G/ is modular if and only if two subgroupsA;B 2 LcN.G/

permute.

(ii) The lattice LcN.G/ is distributive if and only if LcN.G/ D Ln.G/ is dis-
tributive.

2 Proof of Theorem 1.2

Let D DM Ì A and R D N Ì B . Then the pairs .M;A/ and .N;B/ are said to
be equivalent provided there are isomorphisms f WM ! N and gWA! B such
that f .a�1ma/ D g.a�1/f .m/g.a/ for all m 2M and a 2 A.

In fact, the following lemma is known (see for example [10, Lemma 3.27]), and
it can be proved by direct verification.

Lemma 2.1. Let D DM Ì A and R D N Ì B . If the pairs .M;A/ and .N;B/
are equivalent, then D ' R.

Lemma 2.2. Let N;M and K < H � G be normal subgroups of G, where H=K
is a chief factor of G.

(1) If N � K, then

.H=K/ Ì .G=CG.H=K// ' ..H=N/=.K=N//

Ì ..G=N/=CG=N ..H=N/=.K=N///:
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(2) If T=L is a chief factor of G and H=K and T=L are G-isomorphic, then

CG.H=K/ D CG.T=L/;

.H=K/ Ì .G=CG.H=K// ' .T=L/ Ì .G=CG.T=L//:

(3) .MN=N/ Ì .G=CG.MN=N// ' .M=M \N/ Ì .G=CG.M=M \N//.

Proof. (1) In view of the G-isomorphisms H=K ' .H=N/=.K=N/ and

G=CG.H=K/ ' .G=N/=.CG.H=K/=N/

' .G=N/=.CG=N ..H=N/=.K=N///;

the pairs
.H=K;G=CG.H=K//;

..H=N/=.K=N/; .G=N/=CG=N ..H=N/=.K=N///

are equivalent. Hence statement (1) is a corollary of Lemma 2.1.
(2) A direct check shows that C D CG.H=K/ D CG.T=L/ and that the pairs

.H=K;G=C/ and .T=L;G=C/ are equivalent. Hence statement (2) is also a corol-
lary of Lemma 2.1.

(3) This follows from theG-isomorphismMN=N 'M=M\N and part (2).

Lemma 2.3. Let K � H , K � V , W � V and N � H be normal subgroups
of G. Suppose that every chief factor of G between K and H is F-central in G.

(1) If every chief factor ofG betweenN andH is F-central inG, then every chief
factor G between K \N and H is F-central in G.

(2) If every chief factor ofG betweenK and V is F-central inG, then every chief
factor G between K and HV is F-central in G.

(3) If every chief factor of G between K and KN is F-central in G, then every
chief factor G between K \N and N is F-central in G.

(4) If every chief factor ofG betweenW and V is F-central inG, then every chief
factor G between K \W and H \ V is F-central in G.

(5) If every chief factor ofG betweenW and V is F-central inG, then every chief
factor G between KW and HV is F-central in G.

Proof. (1) In view of Lemma 2.2 (1), we can assume without loss of generality
that K \N D 1. Let T=L be any chief factor of G below H . First suppose that
T \K � L. From the G-isomorphism KT=KL ' T=L.T \K/ D T=L and
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Lemma 2.1 (2), we get that T=L is F-central in G. Now assume that T \K — L.
Then T D L.T \K/, and so, from the G-isomorphism

T=L D L.T \K/=L ' .T \K/=.L \K/;

we get that .T \K/=.L \K/ is a chief factor of G, and this factor is G-iso-
morphic with .T \K/N=.L \K/N since .T \K/ \N D 1. Thus both G-iso-
morphic factors T=L and .T \K/N=.L \K/N are F-central in G by Lemma
2.2 (2) since every chief factor of G between N and H is F-central in G by hy-
pothesis. Therefore, we have (1).

(2) We can assume without loss of generality thatK D 1. Let T=L be any chief
factor of G such thatH � L < T � HV . Then T D L.T \ V /, and so, from the
G-isomorphism T=L D L.T \ V /=L ' .T \ V /=.L \ V / and Lemma 2.2 (2),
we get that T=L is F-central in G since every chief factor of G between K D 1
and V is F-central in G by hypothesis. Therefore, there is a chief series of G
with F-central in HV , so we have (2) by the Jordan–Hölder theorem for the chief
series.

(3) Let K \N D N0 < N1 < � � � < Nt�1 < Nt D N be a chief series of G
between K \N and N . Then, from the G-isomorphism

NiK=Ni�1K ' Ni=Ni \Ni�1K D Ni=Ni�1.Ni \K/

D Ni=Ni�1;

it follows thatK D KN0 < KN1 < � � � < KNt�1 < KNt D KN is a chief series
of G between K and KN . Therefore, in view of the Jordan–Hölder theorem for
the chief series and Lemma 2.2 (2), statement (3) is true.

(4) This follows from the G-isomorphisms

.H \ V /=.K \ V / ' .H \ V /K=K;

.V \H/=.W \H/ ' .V \H/W=W

and part (1).
(5) As HV=KW D .HKW=KW /.VKW=KW /, statement (5) follows from

Lemma 2.2, the G-isomorphisms

HKW=KW ' H=H \KW D H=K.H \W /

' .H=K/=.K.H \W /=K/;

VKW=KW ' .V=W /=.W.V \K/=W /

and part (2).
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Proof of Theorem 1.2. Let A and B be subgroups of G such that A;B 2 LcF.G/

(respectively A;B 2 LF.G/). Then every chief factor of G between AG and AG

is F-central in G (then, respectively, AG=AG 2 F). Therefore, in view of the
G-isomorphisms

AG.AGBG/=AGBG ' A
G=.AG

\ AGBG/ D A
G=AG.A

G
\ BG/

' .AG=AG/=.AG.A
G
\ BG/=AG/;

we get that every chief factor of G between AGBG and AG.AGBG/ is F-central
in G (respectively, we get that AG.AGBG/=AGBG 2 F since F is closed un-
der taking homomorphic images). Similarly, we can get that every chief factor
of G between AGBG and BG.AGBG/ is F-central in G (respectively, we get that
BG.AGBG/=AGBG 2 F). Moreover,

AGBG=AGBG D .A
G.AGBG/=AGBG/.B

G.AGBG/=AGBG/;

and so every chief factor of G between AGBG and AGBG is F-central in G by
Lemma 2.3 (2) (respectively, we have AGBG=AGBG 2 F since F is a Fitting
formation).

Next note that hA;BiG D AGBG andAGBG � hA;BiG . So every chief factor
of G between hA;BiG and hA;BiG D AGBG is F-central in G (respectively,
we get that hA;BiG=hA;BiG 2 F since F is closed under taking homomorphic
images). Hence hA;Bi 2 LcF.G/ (respectively hA;Bi 2 LF.G/).

Now note that .A \ B/G D AG \ BG . On the other hand, from the G-isomor-
phism

.AG
\ BG/=.AG \ B

G/ D .AG
\ BG/=.AG \ B

G
\ AG/

' AG.B
G
\ AG/=AG � A

G=AG ;

we get that every chief factor of G between AG \ B
G and AG \ BG is F-central

in G by Lemma 2.3 (5) (respectively, we get that .AG \ BG/=.AG \ B
G/ 2 F

since F is closed under taking normal subgroups). Similarly, we get that every
chief factor ofG betweenBG \ A

G andBG \ AG is F-central inG (respectively,
we have .BG \ AG/=.BG \ A

G/ 2 F/. But then we get that every chief factor
ofG between .AG \ B

G/ \ .BG \ A
G/ D AG \ BG andAG \ BG is F-central

in G by Lemma 2.3 (3) (respectively, we get that .AG \ BG/=.AG \ BG/ 2 F

since F is a formation). It is clear also that .A \ B/G � AG \ BG . Therefore,
every chief factor of G between .A \ B/G D AG \ BG and .A \ B/G is F-cen-
tral in G (respectively, we get that .A \ B/G=.A \ B/G 2 F). Therefore, we
have A \ B 2 LcF.G/ (respectively A \ B 2 LF.G/). Hence the set LcF.G/

(respectively the set LF.G/) is a sublattice of the lattice L.G/.
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3 Proofs of Theorems 1.3 and 1.4

We use ZF.G/ to denote the product of all normal subgroups A of G such that
either A D 1 or every chief factor of G below A is F-central in G. In view of
Lemma 2.3 (2), every chief factor G below ZF.G/ is F-central in G.

Lemma 3.1. Let A 2 LcF.G/, and let N and E be subgroups of G, where N is
normal in G.

(1) If L � T are normal subgroups of G such that all chief factors of G between
L and T are F-central inG, then L.T=L/ is isomorphic to the interval ŒT; L�
in LcF.G/.

(2) AN=N 2 LcF.G=N/.

(3) If H=N 2 LcF.G=N/, then H 2 LcF.G/.

(4) LcF.G=N/ is isomorphic to the interval ŒG=N � in LcF.G/.

(5) If F is a hereditary saturated formation, then A \E 2 LcF.E/.

(6) If F is a normally hereditary saturated formation and E is subnormal in G,
then A \E 2 LcF.E/.

Proof. (1) This statement follows from the fact that, for every subgroup H of G
with L � H � T , we have L � HG and HG � T .

(2) From the G-isomorphisms

.AGN=N/=.AGN=N/ ' .A
G=AG/=.AG.A

G
\N/=AG/

and Lemma 2.2, we get that every chief factor of G=N between AGN=N and
AGN=N is F-central in G since every chief factor of G between AG and AG is
F-central in G by hypothesis. On the other hand, we have

.AN=N/G=N
D .AN/G=N D AGN=N and AGN=N � .AN=N/G=N :

Hence every chief factor of G between .AN=N/G=N and .AN=N/G=N is F-cen-
tral in G=N , so AN=N 2 LcF.G=N/.

(3) This follows from the G-isomorphism

HG=HG ' .H
G=N/=.HG=N/ D .H=N/

G=N =.H=N/G=N :

(4) This follows from parts (2) and (3).
(5) First note that, by [5, Chapter 1, Theorem 2.7 (a)],

.AG=AG/ \ .EAG=AG/ D AG.A
G
\E/=AG � ZF.EAG=AG/
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since, by hypothesis, we have AG=AG � ZF.G=AG/. On the other hand, we
have f .ZF.EAG=AG//DZF.E=E \ AG/, where f WEAG=AG ! E=E \ AG

is the canonical isomorphism from EAG=AG onto E=E \ AG . Hence

f .AG.A
G
\E/=AG/ D .A

G
\E/=.AG \E/ � ZF.E=AG \E/;

where AG \E � .A \E/E � A \E � .A \E/
E � AG \E, and so

.A \E/E=.A \E/E � ZF.E=.A \E/E /:

Hence A \E 2 LcF.E/.
(6) See the proof of (5).

Lemma 3.2. Suppose that F is a Fitting formation. Let A 2 LF.G/, and let N
and E be subgroups of G, where N is normal in G.

(1) If L � T are normal subgroups of G such that T=L 2 F, then L.T=L/ is
isomorphic to the interval ŒT; L� in LF.G/.

(2) AN=N 2 LF.G=N/.

(3) If H=N 2 LF.G=N/, then H 2 LF.G/.

(4) LF.G=N/ is isomorphic to the interval ŒG=N � in LF.G/.

(5) If F is hereditary, then A \E 2 LF.E/.

(6) If E is subnormal in G, then A \E 2 LF.E/.

Proof. Statements (1), (2), (3) and (4) can be proved similarly to statements (1),
(2), (3) and (4) of Lemma 3.1, respectively.

(5) First note that

.AG=AG/ \ .EAG=AG/ D AG.A
G
\E/=AG � .EAG=AG/F

since F is hereditary and we have AG=AG 2 .G=AG/F by hypothesis. On the
other hand, we have

f ..EAG=AG/F/ D .E=E \ AG/F;

where f WEAG=AG ! E=E \ AG is the canonical isomorphism from EAG=AG

onto E=E \ AG . Hence

f .AG.A
G
\E/=AG/ D .A

G
\E/=.AG \E/ � .E=AG \E/F;

where AG \E � .A \E/E � A \E � .A \E/
E � AG \E, and so

.A \E/E=.A \E/E � .E=.A \E/E /F:

Hence A \E 2 LF.E/.
(6) See the proof of (5).
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In fact, the following lemma is known.

Lemma 3.3. Let A be a subnormal subgroup of G.

(1) If A is a p-group, then A � Op.G/.

(2) If jG W Aj is a power of p, then G=AG is a p-group.

Proof. There is a subgroup chain

A D A0 � A1 � � � � � An D G

such that Ai�1 E Ai for all i D 1; : : : ; n. We can assume without loss of general-
ity that M D An�1 < G.

(1) By induction, we have that A � Op.M/. On the other hand, the subgroup
Op.M/ is normal inG since it is characteristic inM , soOp.M/ � Op.G/. Hence
we have (1).

(2) It is enough to show that, for every p0-element x of G, we have x 2 A. But,
since evidently jG WM j is a power of p, x 2M , so we have x 2A by induction.

Lemma 3.4 (Wielandt [11]). IfA D A0 is a perfect subnormal subgroup ofG, then
AB D BA for all subnormal subgroups B of G.

Proof of Theorem 1.4. (i) First suppose that the lattice LcN.G/ is modular. We
show that, in this case, every pair of subgroups A;B 2 LcN.G/ is permutable.
Suppose that this is false, and let G be a counterexample with jGj C jAj C jBj
minimal. Then AB ¤ BA, but A1B2 D B1A1 for all A1 � A and B1 � B such
that A1; B1 2 LcN.G/ and either A1 < A or B1 < B .

(1) AN=N;BN=N 2 LcN.G=N/ for every normal subgroup N of G. (This
follows from Lemma 3.1 (2).)

(2) LcN.G=N/ is isomorphic to the interval ŒG=N � in LcN.G/. Hence the
lattice LcN.G=N/ is modular. (This follows from Lemma 3.1 (4).)

(3) RAB is a subgroup ofG for every minimal normal subgroupR ofG. Hence
AG D 1 D BG .

By claim (1), we have AR=R;BR=R 2 LcN.G=R/, so the choice of G and
claim (2) imply that

.AR=R/.BR=R/ D .BR=R/.AR=R/ D RAB=R

is a subgroup of G. Therefore, since AB ¤ BA, it follows that AG D 1 D BG .
(4) Let V D AGBG . Then V � Z1.G/ and the lattice L.V / is a sublattice in

LcN.G/.
Indeed, claim (3) and Lemma 2.3 (2) imply that V � Z1.G/. Hence, for every

subgroup H � V , we have H 2 LcN.G/. Hence claim (4) holds.
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The final contradiction for the necessity. Claim (4) implies that V is nilpotent
and the lattice L.V / of all subgroups of V is modular. Let �.V / D ¹p1; : : : ; ptº,
and let respectivelyPi ,Ai andBi be the Sylow pi -subgroups of V ,A andB for all
i D 1; : : : ; t . ThenAi � Pi andBj � Pj for all i and j . HenceAiBj D BjAi for
all i ¤ j since ŒPi ; Pj � D 1. It is clear also that L.Pi / is a sublattice in LcN.G/,
so L.Pi / is modular too. But then AiBi D BiAi for all i by [9, Lemma 2.3.2], so

AB D .A1 � � � � � At /.B1 � � � � � Bt /

D .B1 � � � � � Bt /.A1 � � � � � At / D BA;

contrary to the choice of .G;A;B/. The necessity of the condition of the theorem
is proved.

Sufficiency. This follows from the fact that if, for the subgroups A � H and B
of G, we have AB D BA, then H \ hA;Bi D hA;H \ Bi.

(ii) The sufficiency is evident. Now suppose that the lattice LcN.G/ is distribu-
tive. Then, for every subgroup A 2 LcN.G/, the lattice L.AG=AG/ is a sublattice
in LcN.G/ by Lemma 3.1 (1), so L.AG=AG/ is distributive. Hence AG=AG is
cyclic by the Ore theorem [9, Theorem 1.2.3]. Hence A=AG is normal in G=AG .
Therefore, LcN.G/ D Ln.G/ is distributive.

Proof of Theorem 1.3. First note that, by [6, X, Lemma 13.3 and Corollary 13.11],
N� is a Fitting formation.

Necessity. Suppose that this is false, and let G be a counterexample with sub-
normal subgroups L;B � T , where

L 2 LN�.T / and LB ¤ BL;

for which jGj C jLj is minimal. Therefore, for every proper subnormal subgroup
V of L with V 2 LN�.T /, we have VB D BV .

(1) hL;Bi D G. Hence T D G.
Assume that hL;Bi < G. The subgroup hL;Bi is subnormal inG by [4, Chap-

ter A, Section 14.4]. Hence the lattice Lsn.hL;Bi/ is modular since it is a sub-
lattice of the lattice Lsn.G/. Moreover, Lemma 3.2 (6) implies L 2 LN�.hL;Bi/.
Hence the choice of G implies that LB D BL, a contradiction. Hence we have
T D hL;Bi D G.

(2) LG D 1 D BG .
Indeed, suppose that, for some minimal normal subgroup N of G, we have

either N � L or N � B . It is clear that the lattice Lsn.G=N/ is isomorphic to
the interval ŒG=N � in the modular lattice Lsn.G/. Hence Lsn.G=N/ is modular.
Moreover,LN=N andBN=N are subnormal subgroups ofG=N by [4, Chapter A,
Section 14.1]. On the other hand, Lemma 3.2 (2) and claim (1) imply that

LN=N 2 LN�.G=N/ D LN�.T=N /:
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Therefore, the choice of G implies that

LB=N D .LN=N/.BN=N/ D .BN=N/.LN=N/ D BL=N;

so LB D BL. This contradiction shows that LG D 1 D BG .
(3) L is a p-group for some prime p.
First note that LG ' LG=LG is quasinilpotent since T D G, LG D 1 and

L 2 LN�.T / D LN�.G/ by claims (1) and (2). Therefore, for every proper sub-
normal subgroup V ofL, we have V 2 LN�.T /, so VB D BV . SinceLB ¤ BL,
it follows that L has a normal subgroup W such that L=W is simple and every
proper subnormal subgroup of L is contained in W .

By [6, Chapter X, Theorem 13.6], either L=F.L/ D A1 � � � � � At for some
non-abelian simple groups A1; : : : ; At or L D F.L/ is nilpotent. In the former
case, we have t D 1 and W D F.L/, so L D L0 is perfect, and hence LB D BL
by Lemma 3.4. Therefore, we have the second case, so L is a cyclic p-group for
some prime p.

(4) G D Op.G/B . (Since L is a subnormal p-subgroup of G by claim (3), this
follows from Lemma 3.3 (1) and claim (1).)

The final contradiction for the necessity. SinceB is subnormal inG and jG W Bj
is a power of p by claim (4), G=BG is a p-group by Lemma 3.3 (2). But then G is
a p-group by claim (2). Hence L.G/ D Lsn.G/ is modular. Therefore,LB D BL
by [9, Lemma 2.3.2]. This contradiction completes the proof of the necessity.

Sufficiency. Suppose that this is false, and let G be a counterexample of mini-
mal order. The hypothesis holds for every proper subnormal subgroup V of G, so
the lattice Lsn.V / is modular by the choice of G.

First we show that the lattice Lsn.G/ is upper semimodular. In view of [9, p. 46],
it is enough to show that if A;B 2 Lsn.G/ such that A and B cover A \ B in
Lsn.G/, then hA;Bi covers A in Lsn.G/. Assume that this is false.

(1) G D hA;Bi.
Suppose that hA;Bi < G. Then the lattice Lsn.hA;Bi/ is modular. Hence this

lattice is upper semimodular by [9, Theorem 2.1.10], so hA;Bi covers A, a con-
tradiction. Hence we have (1).

(2) AB ¤ BA.
Indeed, if AB D BA, then G D AB by claim (1). Hence, for every subgroup

T 2 Lsn.G/ satisfying A � T � G, we have

T D A.T \ B/ and either T \ B D B or A \ B D T \ B:

But then, in the former case, we have T D A.T \ B/ D A.A \ B/ D A. In the
second case, we have T D G. HenceG D hA;Bi coversA, a contradiction. Hence
we have (2).
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(3) A \ B D 1. Hence A and B are minimal subnormal subgroups of G.
LetN D A \ B . We show thatN D 1. Suppose thatN ¤ 1. Note that, in view

of claim (1), G D hA;Bi � NG.N / since A and B cover N in Lsn.G/. Now let
L=N , B=N and T=N be subnormal subgroups of G=N such that

L=N;B=N � T=N and L=N 2 LN�.T=N /:

ThenL,B and T are subnormal subgroups ofG such thatB � T andL2LN�.T /

by Lemma 3.2 (3). Then LB D BL by hypothesis, so

.L=N/.B=N/ D .B=N/.L=N/:

Hence the hypothesis holds for G=N , so the lattice Lsn.G=N/ is modular by
the choice of G. Therefore, G=N D hA;Bi=N covers A=N in Lsn.G=N/, and
hence G D hA;Bi covers A in Lsn.G/. This contradiction shows that N D 1, so
A and B are minimal subnormal subgroups of G.

The final contradiction for the sufficiency. In view of claim (3), A and B are
simple groups. If A D A0 is perfect, then AB D BA by Lemma 3.4, contrary to
claim (2). Hence A is abelian, so A � Op.G/ for some prime p, which implies
that A 2 LN�.G/. But then AB D BA by hypothesis. This contradiction shows
that the lattice Lsn.G/ is upper semimodular. On the other hand, this lattice is
lower semimodular by [9, Theorem 2.1.8]. From [9, Theorem 2.1.10], we get now
that the lattice Lsn.G/ is modular, contrary to the choice of G. Therefore, the
sufficiency of the condition of the theorem is true.
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