On two sublattices of the subgroup lattice of a finite group

Zhang Chi and Alexander N. Skiba

Communicated by Alexander Olshanskii

Abstract. Let \mathfrak{F} be a non-empty class of groups, let *G* be a finite group and let $\mathscr{L}(G)$ be the lattice of all subgroups of *G*. A chief H/K factor of *G* is \mathfrak{F} -central in *G* if $(H/K) \rtimes (G/C_G(H/K)) \in \mathfrak{F}$. Let $\mathscr{L}_{c\mathfrak{F}}(G)$ be the set of all subgroups *A* of *G* such that every chief factor H/K of *G* between A_G and A^G is \mathfrak{F} -central in *G*; $\mathscr{L}_{\mathfrak{F}}(G)$ denotes the set of all subgroups *A* of *G* with $A^G/A_G \in \mathfrak{F}$. We prove that the set $\mathscr{L}_{c\mathfrak{F}}(G)$ and, in the case when \mathfrak{F} is a Fitting formation, the set $\mathscr{L}_{\mathfrak{F}}(G)$ are sublattices of the lattice $\mathscr{L}(G)$. We also study conditions under which the lattice $\mathscr{L}_{c\mathfrak{N}}(G)$ and the lattice of all subnormal subgroup of *G* are modular.

1 Introduction

Throughout this paper, all groups are finite, and *G* always denotes a finite group. Moreover, $\mathcal{L}(G)$ denotes the lattice of all subgroups of *G*; $\mathcal{L}_n(G)$ is the lattice of all normal subgroups of *G*; $\mathcal{L}_{sn}(G)$ denotes the lattice of all subnormal subgroups of *G*. If *n* is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing *n*; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of *G*; *C_n* denotes a cyclic group of order *n*. We use $\mathfrak{N}, \mathfrak{N}^*, \mathfrak{U}$ and \mathfrak{S} to denote the classes of all nilpotent, of all quasinilpotent, of all supersoluble and of all soluble groups, respectively.

In what follows, \mathfrak{F} is a class of groups containing all identity groups; $G^{\mathfrak{F}}$ denotes the intersection of all normal subgroups N of G with $G/N \in \mathfrak{F}$; $G_{\mathfrak{F}}$ is the product of all normal subgroups N of G with $N \in \mathfrak{F}$. The class \mathfrak{F} is said to be a *formation* if, for every group G, every homomorphic image of $G/G^{\mathfrak{F}}$ belongs to \mathfrak{F} and a *Fitting formation* if \mathfrak{F} is a formation such that, for every group G, every normal subgroup of $G_{\mathfrak{F}}$ belongs to \mathfrak{F} . The formation \mathfrak{F} is said to be *saturated* if $G \in \mathfrak{F}$ whenever $G^{\mathfrak{F}} \leq \Phi(G)$ and *(normally) hereditary* if $H \in \mathfrak{F}$ whenever $H \leq G \in \mathfrak{F}$ (respectively whenever $H \leq G \in \mathfrak{F}$).

Research of the first author is supported by China Scholarship Council and NNSF of China (11771409).

Note, in passing, that $\mathfrak{N}, \mathfrak{N}^*$ and \mathfrak{S} are Fitting formations, and $\mathfrak{N}, \mathfrak{U}$ and \mathfrak{S} are hereditary saturated formations [2].

If $K \leq H$ are normal subgroups of *G* and $C \leq C_G(H/K)$, then one can form the semidirect product $(H/K) \rtimes (G/C)$ putting

$$(hK)^{gC} = g^{-1}hgK$$
 for all $hK \in H/K$ and $gC \in G/C$.

We say, following [10], that a chief H/K factor of G is \mathcal{F} -central in G if

$$(H/K) \rtimes (G/C_G(H/K)) \in \mathfrak{F}.$$

In this paper, we deal with the following two sets of subgroups of $G: \mathcal{L}_{c\mathfrak{F}}(G)$ is the set of all subgroups A of G such that every chief factor H/K of G between A_G and A^G is \mathfrak{F} -central in $G; \mathcal{L}_{\mathfrak{F}}(G)$ denotes the set of all subgroups A of Gwith $A^G/A_G \in \mathfrak{F}$.

Before continuing, consider some well-known examples.

Example 1.1. (i) A subgroup A of G is said to be *quasinormal* or *permutable* (respectively *S*-quasinormal or *S*-permutable [1,5]) in G if A permutes with all subgroups (respectively with all Sylow subgroups) H of G, that is, AH = HA. In view of [8] (see also [1, Corollary 1.5.6]), every quasinormal subgroup of G belongs to $\mathcal{L}_{c\mathfrak{N}}(G)$. On the other hand, in view of the results of Kegel [7] and Deskins [3] (see also [1, Theorem 1.2.17]), every *S*-permutable subgroup of G belongs to $\mathcal{L}_{\mathfrak{M}}(G)$.

(ii) A subgroup M of G is called *modular* if M is a modular element (in the sense of Kurosh [9, p. 43]) of the lattice $\mathcal{L}(G)$ of all subgroups of G, that is,

(a) $\langle X, M \cap Z \rangle = \langle X, M \rangle \cap Z$ for all $X \leq G, Z \leq G$ such that $X \leq Z$,

(b) $\langle M, Y \cap Z \rangle = \langle M, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $M \leq Z$.

In view of [9, Theorem 5.2.5], every modular subgroup of G belongs to $\mathcal{L}_{cu}(G)$.

(iii) Let $G = (C_7 \rtimes \operatorname{Aut}(C_7)) \times A_5 \times P$, where A_5 is an alternating group of degree 5 and *P* is a non-abelian group of order p^3 and exponent *p* for some prime p > 2. Let *A* be a subgroup of $\operatorname{Aut}(C_7)$ of order 2. Then *A* is not modular in *G*, but $A \in \mathcal{L}_{c\mathfrak{U}}(G)$ since every chief factor of *G* below $A^G = C_7 \rtimes A$ is cyclic. Now let *L* be a subgroup of *P* of order *p* with $L \nleq Z(P)$. Then *L* is not quasinormal in *P*, so *L* is not quasinormal in *G*, but $L \in \mathcal{L}_{c\mathfrak{M}}(G)$ since, for every chief factor H/K of *G* below $L^G = P$, we have $C_G(H/K) = G$.

(iv) Let $G = (A_5 \wr C_7) \times A_4 = (K \rtimes C_7) \times A_4$, where K is the base group of the regular wreath product $A_5 \wr C_7$ and A_5 and A_4 are the alternating groups of degree 5 and 4, respectively. Let L be the first copy of A_5 in K. Then L is subnormal in G, but $L \notin \mathcal{L}_{\mathfrak{N}}(G)$. Finally, if Z is a subgroup of order 2 in A_4 and $H = (KC_7)Z$, then the subgroup H is not S-quasinormal in G, but $H \in \mathcal{L}_{\mathfrak{N}}(G)$. It is well known that the set of all quasinormal subgroups and the set of all modular subgroups do not form sublattices of the lattice $\mathcal{L}(G)$. Nevertheless, our first result shows that the set $\mathcal{L}_{c\mathfrak{M}}(G)$ and the set $\mathcal{L}_{c\mathfrak{U}}(G)$ are sublattices of $\mathcal{L}(G)$.

Theorem 1.2. The set $\mathcal{L}_{c\mathfrak{F}}(G)$ and, in the case when \mathfrak{F} is a Fitting formation, the set $\mathcal{L}_{\mathfrak{F}}(G)$ are sublattices of the lattice $\mathcal{L}(G)$.

Applying the lattice $\mathcal{L}_{\mathfrak{N}^*}(G)$, we can give permutable conditions under which the lattice $\mathcal{L}_{\mathrm{sn}}(G)$ is modular.

Theorem 1.3. The lattice $\mathcal{L}_{sn}(G)$ is modular if and only if, for every two subnormal subgroups $L \leq T$ of G, where $L \in \mathcal{L}_{\mathfrak{N}^*}(T)$, L permutes with every subnormal subgroup M of T, that is, LM = ML.

Finally, we describe the conditions under which the lattice $\mathcal{L}_{c\mathfrak{N}}(G)$ is modular or distributive.

Theorem 1.4. The following statements hold:

- (i) The lattice $\mathcal{L}_{c\mathfrak{N}}(G)$ is modular if and only if two subgroups $A, B \in \mathcal{L}_{c\mathfrak{N}}(G)$ permute.
- (ii) The lattice L_{cℜ}(G) is distributive if and only if L_{cℜ}(G) = L_n(G) is distributive.

2 Proof of Theorem 1.2

Let $D = M \rtimes A$ and $R = N \rtimes B$. Then the pairs (M, A) and (N, B) are said to be *equivalent* provided there are isomorphisms $f: M \to N$ and $g: A \to B$ such that $f(a^{-1}ma) = g(a^{-1})f(m)g(a)$ for all $m \in M$ and $a \in A$.

In fact, the following lemma is known (see for example [10, Lemma 3.27]), and it can be proved by direct verification.

Lemma 2.1. Let $D = M \rtimes A$ and $R = N \rtimes B$. If the pairs (M, A) and (N, B) are equivalent, then $D \simeq R$.

Lemma 2.2. Let N, M and $K < H \leq G$ be normal subgroups of G, where H/K is a chief factor of G.

(1) If $N \leq K$, then

$$(H/K) \rtimes (G/C_G(H/K)) \simeq ((H/N)/(K/N))$$
$$\rtimes ((G/N)/C_{G/N}((H/N)/(K/N))).$$

(2) If T/L is a chief factor of G and H/K and T/L are G-isomorphic, then

$$C_G(H/K) = C_G(T/L),$$

$$(H/K) \rtimes (G/C_G(H/K)) \simeq (T/L) \rtimes (G/C_G(T/L)).$$

(3) $(MN/N) \rtimes (G/C_G(MN/N)) \simeq (M/M \cap N) \rtimes (G/C_G(M/M \cap N)).$

Proof. (1) In view of the *G*-isomorphisms $H/K \simeq (H/N)/(K/N)$ and

$$G/C_G(H/K) \simeq (G/N)/(C_G(H/K)/N)$$
$$\simeq (G/N)/(C_{G/N}((H/N)/(K/N))),$$

the pairs

$$(H/K, G/C_G(H/K)),$$

 $((H/N)/(K/N), (G/N)/C_{G/N}((H/N)/(K/N)))$

are equivalent. Hence statement (1) is a corollary of Lemma 2.1.

(2) A direct check shows that $C = C_G(H/K) = C_G(T/L)$ and that the pairs (H/K, G/C) and (T/L, G/C) are equivalent. Hence statement (2) is also a corollary of Lemma 2.1.

(3) This follows from the *G*-isomorphism $MN/N \simeq M/M \cap N$ and part (2). \Box

Lemma 2.3. Let $K \le H$, $K \le V$, $W \le V$ and $N \le H$ be normal subgroups of *G*. Suppose that every chief factor of *G* between *K* and *H* is \mathfrak{F} -central in *G*.

- (1) If every chief factor of G between N and H is \mathcal{F} -central in G, then every chief factor G between $K \cap N$ and H is \mathcal{F} -central in G.
- (2) If every chief factor of G between K and V is \mathcal{F} -central in G, then every chief factor G between K and HV is \mathcal{F} -central in G.
- (3) If every chief factor of G between K and KN is \mathfrak{F} -central in G, then every chief factor G between $K \cap N$ and N is \mathfrak{F} -central in G.
- (4) If every chief factor of G between W and V is F-central in G, then every chief factor G between K ∩ W and H ∩ V is F-central in G.
- (5) If every chief factor of G between W and V is &-central in G, then every chief factor G between KW and HV is &-central in G.

Proof. (1) In view of Lemma 2.2 (1), we can assume without loss of generality that $K \cap N = 1$. Let T/L be any chief factor of G below H. First suppose that $T \cap K \leq L$. From the G-isomorphism $KT/KL \simeq T/L(T \cap K) = T/L$ and

Lemma 2.1 (2), we get that T/L is \mathfrak{F} -central in G. Now assume that $T \cap K \not\leq L$. Then $T = L(T \cap K)$, and so, from the G-isomorphism

$$T/L = L(T \cap K)/L \simeq (T \cap K)/(L \cap K),$$

we get that $(T \cap K)/(L \cap K)$ is a chief factor of *G*, and this factor is *G*-isomorphic with $(T \cap K)N/(L \cap K)N$ since $(T \cap K) \cap N = 1$. Thus both *G*-isomorphic factors T/L and $(T \cap K)N/(L \cap K)N$ are \mathcal{F} -central in *G* by Lemma 2.2 (2) since every chief factor of *G* between *N* and *H* is \mathcal{F} -central in *G* by hypothesis. Therefore, we have (1).

(2) We can assume without loss of generality that K = 1. Let T/L be any chief factor of G such that $H \le L < T \le HV$. Then $T = L(T \cap V)$, and so, from the G-isomorphism $T/L = L(T \cap V)/L \simeq (T \cap V)/(L \cap V)$ and Lemma 2.2 (2), we get that T/L is \mathfrak{F} -central in G since every chief factor of G between K = 1and V is \mathfrak{F} -central in G by hypothesis. Therefore, there is a chief series of Gwith \mathfrak{F} -central in HV, so we have (2) by the Jordan–Hölder theorem for the chief series.

(3) Let $K \cap N = N_0 < N_1 < \cdots < N_{t-1} < N_t = N$ be a chief series of G between $K \cap N$ and N. Then, from the G-isomorphism

$$N_i K/N_{i-1} K \simeq N_i/N_i \cap N_{i-1} K = N_i/N_{i-1}(N_i \cap K)$$
$$= N_i/N_{i-1},$$

it follows that $K = KN_0 < KN_1 < \cdots < KN_{t-1} < KN_t = KN$ is a chief series of *G* between *K* and *KN*. Therefore, in view of the Jordan–Hölder theorem for the chief series and Lemma 2.2 (2), statement (3) is true.

(4) This follows from the G-isomorphisms

$$(H \cap V)/(K \cap V) \simeq (H \cap V)K/K,$$

$$(V \cap H)/(W \cap H) \simeq (V \cap H)W/W$$

and part (1).

(5) As HV/KW = (HKW/KW)(VKW/KW), statement (5) follows from Lemma 2.2, the *G*-isomorphisms

$$HKW/KW \simeq H/H \cap KW = H/K(H \cap W)$$
$$\simeq (H/K)/(K(H \cap W)/K),$$
$$VKW/KW \simeq (V/W)/(W(V \cap K)/W)$$

and part (2).

Proof of Theorem 1.2. Let A and B be subgroups of G such that $A, B \in \mathcal{L}_{c\mathfrak{F}}(G)$ (respectively $A, B \in \mathcal{L}_{\mathfrak{F}}(G)$). Then every chief factor of G between A_G and A^G is \mathfrak{F} -central in G (then, respectively, $A^G/A_G \in \mathfrak{F}$). Therefore, in view of the G-isomorphisms

$$A^{G}(A_{G}B_{G})/A_{G}B_{G} \simeq A^{G}/(A^{G} \cap A_{G}B_{G}) = A^{G}/A_{G}(A^{G} \cap B_{G})$$
$$\simeq (A^{G}/A_{G})/(A_{G}(A^{G} \cap B_{G})/A_{G}),$$

we get that every chief factor of G between $A_G B_G$ and $A^G(A_G B_G)$ is \mathfrak{F} -central in G (respectively, we get that $A^G(A_G B_G)/A_G B_G \in \mathfrak{F}$ since \mathfrak{F} is closed under taking homomorphic images). Similarly, we can get that every chief factor of G between $A_G B_G$ and $B^G(A_G B_G)$ is \mathfrak{F} -central in G (respectively, we get that $B^G(A_G B_G)/A_G B_G \in \mathfrak{F}$). Moreover,

$$A^{G}B^{G}/A_{G}B_{G} = (A^{G}(A_{G}B_{G})/A_{G}B_{G})(B^{G}(A_{G}B_{G})/A_{G}B_{G})$$

and so every chief factor of G between $A_G B_G$ and $A^G B^G$ is \mathcal{F} -central in G by Lemma 2.3 (2) (respectively, we have $A^G B^G / A_G B_G \in \mathcal{F}$ since \mathcal{F} is a Fitting formation).

Next note that $\langle A, B \rangle^G = A^G B^G$ and $A_G B_G \leq \langle A, B \rangle_G$. So every chief factor of G between $\langle A, B \rangle_G$ and $\langle A, B \rangle^G = A^G B^G$ is \mathcal{F} -central in G (respectively, we get that $\langle A, B \rangle^G / \langle A, B \rangle_G \in \mathcal{F}$ since \mathcal{F} is closed under taking homomorphic images). Hence $\langle A, B \rangle \in \mathcal{L}_{c\mathfrak{F}}(G)$ (respectively $\langle A, B \rangle \in \mathcal{L}_{\mathfrak{F}}(G)$).

Now note that $(A \cap B)_G = A_G \cap B_G$. On the other hand, from the *G*-isomorphism

$$(A^G \cap B^G)/(A_G \cap B^G) = (A^G \cap B^G)/(A_G \cap B^G \cap A^G)$$
$$\simeq A_G(B^G \cap A^G)/A_G \le A^G/A_G,$$

we get that every chief factor of G between $A_G \cap B^G$ and $A^G \cap B^G$ is \mathfrak{F} -central in G by Lemma 2.3 (5) (respectively, we get that $(A^G \cap B^G)/(A_G \cap B^G) \in \mathfrak{F}$ since \mathfrak{F} is closed under taking normal subgroups). Similarly, we get that every chief factor of G between $B_G \cap A^G$ and $B^G \cap A^G$ is \mathfrak{F} -central in G (respectively, we have $(B^G \cap A^G)/(B_G \cap A^G) \in \mathfrak{F}$). But then we get that every chief factor of G between $(A_G \cap B^G) \cap (B_G \cap A^G) = A_G \cap B_G$ and $A^G \cap B^G$ is \mathfrak{F} -central in G by Lemma 2.3 (3) (respectively, we get that $(A^G \cap B^G)/(A_G \cap B_G) \in \mathfrak{F}$ since \mathfrak{F} is a formation). It is clear also that $(A \cap B)^G \leq A^G \cap B^G$. Therefore, every chief factor of G between $(A \cap B)_G = A_G \cap B_G$ and $(A \cap B)^G$ is \mathfrak{F} -central in G (respectively, we get that $(A \cap B)^G/(A \cap B)_G \in \mathfrak{F}$). Therefore, we have $A \cap B \in \mathcal{L}_{c\mathfrak{F}}(G)$ (respectively $A \cap B \in \mathcal{L}_{\mathfrak{F}}(G)$). Hence the set $\mathcal{L}_{c\mathfrak{F}}(G)$ (respectively the set $\mathcal{L}_{\mathfrak{F}}(G)$) is a sublattice of the lattice $\mathcal{L}(G)$.

3 Proofs of Theorems 1.3 and 1.4

We use $Z_{\mathfrak{F}}(G)$ to denote the product of all normal subgroups A of G such that either A = 1 or every chief factor of G below A is \mathfrak{F} -central in G. In view of Lemma 2.3 (2), every chief factor G below $Z_{\mathfrak{F}}(G)$ is \mathfrak{F} -central in G.

Lemma 3.1. Let $A \in \mathcal{L}_{c\mathfrak{F}}(G)$, and let N and E be subgroups of G, where N is normal in G.

- (1) If $L \leq T$ are normal subgroups of G such that all chief factors of G between L and T are \mathfrak{F} -central in G, then $\mathfrak{L}(T/L)$ is isomorphic to the interval [T, L] in $\mathfrak{L}_{c\mathfrak{F}}(G)$.
- (2) $AN/N \in \mathcal{L}_{c\mathfrak{F}}(G/N).$
- (3) If $H/N \in \mathcal{L}_{c\mathfrak{F}}(G/N)$, then $H \in \mathcal{L}_{c\mathfrak{F}}(G)$.
- (4) $\mathcal{L}_{c\mathfrak{F}}(G/N)$ is isomorphic to the interval [G/N] in $\mathcal{L}_{c\mathfrak{F}}(G)$.
- (5) If \mathfrak{F} is a hereditary saturated formation, then $A \cap E \in \mathcal{L}_{c\mathfrak{F}}(E)$.
- (6) If \mathfrak{F} is a normally hereditary saturated formation and E is subnormal in G, then $A \cap E \in \mathcal{L}_{c\mathfrak{F}}(E)$.

Proof. (1) This statement follows from the fact that, for every subgroup H of G with $L \leq H \leq T$, we have $L \leq H_G$ and $H^G \leq T$.

(2) From the G-isomorphisms

$$(A^G N/N)/(A_G N/N) \simeq (A^G/A_G)/(A_G (A^G \cap N)/A_G)$$

and Lemma 2.2, we get that every chief factor of G/N between $A_G N/N$ and $A^G N/N$ is \mathfrak{F} -central in G since every chief factor of G between A_G and A^G is \mathfrak{F} -central in G by hypothesis. On the other hand, we have

$$(AN/N)^{G/N} = (AN)^G/N = A^G N/N$$
 and $A_G N/N \le (AN/N)_{G/N}$.

Hence every chief factor of G between $(AN/N)_{G/N}$ and $(AN/N)^{G/N}$ is \mathfrak{F} -central in G/N, so $AN/N \in \mathcal{L}_{c\mathfrak{K}}(G/N)$.

(3) This follows from the G-isomorphism

$$H^{G}/H_{G} \simeq (H^{G}/N)/(H_{G}/N) = (H/N)^{G/N}/(H/N)_{G/N}.$$

(4) This follows from parts (2) and (3).

(5) First note that, by [5, Chapter 1, Theorem 2.7 (a)],

$$(A^G/A_G) \cap (EA_G/A_G) = A_G(A^G \cap E)/A_G \le Z_{\mathfrak{F}}(EA_G/A_G)$$

since, by hypothesis, we have $A^G/A_G \leq Z_{\mathfrak{F}}(G/A_G)$. On the other hand, we have $f(Z_{\mathfrak{F}}(EA_G/A_G)) = Z_{\mathfrak{F}}(E/E \cap A_G)$, where $f: EA_G/A_G \to E/E \cap A_G$ is the canonical isomorphism from EA_G/A_G onto $E/E \cap A_G$. Hence

$$f(A_G(A^G \cap E)/A_G) = (A^G \cap E)/(A_G \cap E) \le Z_{\mathfrak{F}}(E/A_G \cap E),$$

where $A_G \cap E \leq (A \cap E)_E \leq A \cap E \leq (A \cap E)^E \leq A^G \cap E$, and so

$$(A \cap E)^E / (A \cap E)_E \le Z_{\mathfrak{F}}(E / (A \cap E)_E).$$

Hence $A \cap E \in \mathcal{L}_{c\mathfrak{F}}(E)$.

(6) See the proof of (5).

Lemma 3.2. Suppose that \mathfrak{F} is a Fitting formation. Let $A \in \mathfrak{L}_{\mathfrak{F}}(G)$, and let N and E be subgroups of G, where N is normal in G.

- (1) If $L \leq T$ are normal subgroups of G such that $T/L \in \mathfrak{F}$, then $\mathfrak{L}(T/L)$ is isomorphic to the interval [T, L] in $\mathfrak{L}_{\mathfrak{F}}(G)$.
- (2) $AN/N \in \mathcal{L}_{\mathfrak{K}}(G/N)$.
- (3) If $H/N \in \mathcal{L}_{\mathfrak{F}}(G/N)$, then $H \in \mathcal{L}_{\mathfrak{F}}(G)$.
- (4) $\mathcal{L}_{\mathfrak{F}}(G/N)$ is isomorphic to the interval [G/N] in $\mathcal{L}_{\mathfrak{F}}(G)$.
- (5) If \mathfrak{F} is hereditary, then $A \cap E \in \mathcal{L}_{\mathfrak{F}}(E)$.
- (6) If E is subnormal in G, then $A \cap E \in \mathcal{L}_{\mathfrak{K}}(E)$.

Proof. Statements (1), (2), (3) and (4) can be proved similarly to statements (1), (2), (3) and (4) of Lemma 3.1, respectively.

(5) First note that

$$(A^G/A_G) \cap (EA_G/A_G) = A_G(A^G \cap E)/A_G \le (EA_G/A_G)_{\mathfrak{F}}$$

since \mathfrak{F} is hereditary and we have $A^G/A_G \in (G/A_G)_{\mathfrak{F}}$ by hypothesis. On the other hand, we have

$$f((EA_G/A_G)_{\mathfrak{F}}) = (E/E \cap A_G)_{\mathfrak{F}},$$

where $f: EA_G/A_G \to E/E \cap A_G$ is the canonical isomorphism from EA_G/A_G onto $E/E \cap A_G$. Hence

$$f(A_G(A^G \cap E)/A_G) = (A^G \cap E)/(A_G \cap E) \le (E/A_G \cap E)_{\mathfrak{H}},$$

where $A_G \cap E \leq (A \cap E)_E \leq A \cap E \leq (A \cap E)^E \leq A^G \cap E$, and so

$$(A \cap E)^E / (A \cap E)_E \le (E/(A \cap E)_E)_{\mathfrak{F}}.$$

Hence $A \cap E \in \mathcal{L}_{\mathfrak{F}}(E)$.

(6) See the proof of (5).

In fact, the following lemma is known.

Lemma 3.3. Let A be a subnormal subgroup of G.

- (1) If A is a p-group, then $A \leq O_p(G)$.
- (2) If |G : A| is a power of p, then G/A_G is a p-group.

Proof. There is a subgroup chain

 $A = A_0 \le A_1 \le \dots \le A_n = G$

such that $A_{i-1} \leq A_i$ for all i = 1, ..., n. We can assume without loss of generality that $M = A_{n-1} < G$.

(1) By induction, we have that $A \leq O_p(M)$. On the other hand, the subgroup $O_p(M)$ is normal in G since it is characteristic in M, so $O_p(M) \leq O_p(G)$. Hence we have (1).

(2) It is enough to show that, for every p'-element x of G, we have $x \in A$. But, since evidently |G:M| is a power of $p, x \in M$, so we have $x \in A$ by induction. \Box

Lemma 3.4 (Wielandt [11]). If A = A' is a perfect subnormal subgroup of G, then AB = BA for all subnormal subgroups B of G.

Proof of Theorem 1.4. (i) First suppose that the lattice $\mathcal{L}_{c\mathfrak{N}}(G)$ is modular. We show that, in this case, every pair of subgroups $A, B \in \mathcal{L}_{c\mathfrak{N}}(G)$ is permutable. Suppose that this is false, and let G be a counterexample with |G| + |A| + |B| minimal. Then $AB \neq BA$, but $A_1B_2 = B_1A_1$ for all $A_1 \leq A$ and $B_1 \leq B$ such that $A_1, B_1 \in \mathcal{L}_{c\mathfrak{N}}(G)$ and either $A_1 < A$ or $B_1 < B$.

(1) $AN/N, BN/N \in \mathcal{L}_{c\mathfrak{N}}(G/N)$ for every normal subgroup N of G. (This follows from Lemma 3.1 (2).)

(2) $\mathcal{L}_{c\mathfrak{N}}(G/N)$ is isomorphic to the interval [G/N] in $\mathcal{L}_{c\mathfrak{N}}(G)$. Hence the lattice $\mathcal{L}_{c\mathfrak{N}}(G/N)$ is modular. (This follows from Lemma 3.1 (4).)

(3) *RAB* is a subgroup of *G* for every minimal normal subgroup *R* of *G*. Hence $A_G = 1 = B_G$.

By claim (1), we have AR/R, $BR/R \in \mathcal{L}_{c\mathfrak{N}}(G/R)$, so the choice of G and claim (2) imply that

$$(AR/R)(BR/R) = (BR/R)(AR/R) = RAB/R$$

is a subgroup of G. Therefore, since $AB \neq BA$, it follows that $A_G = 1 = B_G$.

(4) Let $V = A^G B^G$. Then $V \leq Z_{\infty}(G)$ and the lattice $\mathcal{L}(V)$ is a sublattice in $\mathcal{L}_{c\mathfrak{M}}(G)$.

Indeed, claim (3) and Lemma 2.3 (2) imply that $V \leq Z_{\infty}(G)$. Hence, for every subgroup $H \leq V$, we have $H \in \mathcal{L}_{c\mathfrak{N}}(G)$. Hence claim (4) holds.

The final contradiction for the necessity. Claim (4) implies that V is nilpotent and the lattice $\mathcal{L}(V)$ of all subgroups of V is modular. Let $\pi(V) = \{p_1, \ldots, p_t\}$, and let respectively P_i , A_i and B_i be the Sylow p_i -subgroups of V, A and B for all $i = 1, \ldots, t$. Then $A_i \leq P_i$ and $B_j \leq P_j$ for all i and j. Hence $A_i B_j = B_j A_i$ for all $i \neq j$ since $[P_i, P_j] = 1$. It is clear also that $\mathcal{L}(P_i)$ is a sublattice in $\mathcal{L}_{c\mathfrak{N}}(G)$, so $\mathcal{L}(P_i)$ is modular too. But then $A_i B_i = B_i A_i$ for all i by [9, Lemma 2.3.2], so

$$AB = (A_1 \times \dots \times A_t)(B_1 \times \dots \times B_t)$$
$$= (B_1 \times \dots \times B_t)(A_1 \times \dots \times A_t) = BA$$

contrary to the choice of (G, A, B). The necessity of the condition of the theorem is proved.

Sufficiency. This follows from the fact that if, for the subgroups $A \le H$ and B of G, we have AB = BA, then $H \cap \langle A, B \rangle = \langle A, H \cap B \rangle$.

(ii) The sufficiency is evident. Now suppose that the lattice $\mathcal{L}_{c\mathfrak{M}}(G)$ is distributive. Then, for every subgroup $A \in \mathcal{L}_{c\mathfrak{M}}(G)$, the lattice $\mathcal{L}(A^G/A_G)$ is a sublattice in $\mathcal{L}_{c\mathfrak{M}}(G)$ by Lemma 3.1 (1), so $\mathcal{L}(A^G/A_G)$ is distributive. Hence A^G/A_G is cyclic by the Ore theorem [9, Theorem 1.2.3]. Hence A/A_G is normal in G/A_G . Therefore, $\mathcal{L}_{c\mathfrak{M}}(G) = \mathcal{L}_n(G)$ is distributive.

Proof of Theorem 1.3. First note that, by [6, X, Lemma 13.3 and Corollary 13.11], \mathfrak{N}^* is a Fitting formation.

Necessity. Suppose that this is false, and let G be a counterexample with subnormal subgroups $L, B \leq T$, where

$$L \in \mathcal{L}_{\mathfrak{N}^*}(T)$$
 and $LB \neq BL$,

for which |G| + |L| is minimal. Therefore, for every proper subnormal subgroup V of L with $V \in \mathcal{L}_{\mathfrak{N}^*}(T)$, we have VB = BV.

(1) $\langle L, B \rangle = G$. Hence T = G.

Assume that $\langle L, B \rangle < G$. The subgroup $\langle L, B \rangle$ is subnormal in *G* by [4, Chapter A, Section 14.4]. Hence the lattice $\mathcal{L}_{sn}(\langle L, B \rangle)$ is modular since it is a sublattice of the lattice $\mathcal{L}_{sn}(G)$. Moreover, Lemma 3.2 (6) implies $L \in \mathcal{L}_{\mathfrak{N}^*}(\langle L, B \rangle)$. Hence the choice of *G* implies that LB = BL, a contradiction. Hence we have $T = \langle L, B \rangle = G$.

(2) $L_G = 1 = B_G$.

Indeed, suppose that, for some minimal normal subgroup N of G, we have either $N \leq L$ or $N \leq B$. It is clear that the lattice $\mathcal{L}_{sn}(G/N)$ is isomorphic to the interval [G/N] in the modular lattice $\mathcal{L}_{sn}(G)$. Hence $\mathcal{L}_{sn}(G/N)$ is modular. Moreover, LN/N and BN/N are subnormal subgroups of G/N by [4, Chapter A, Section 14.1]. On the other hand, Lemma 3.2 (2) and claim (1) imply that

$$LN/N \in \mathcal{L}_{\mathfrak{N}^*}(G/N) = \mathcal{L}_{\mathfrak{N}^*}(T/N).$$

Therefore, the choice of G implies that

$$LB/N = (LN/N)(BN/N) = (BN/N)(LN/N) = BL/N,$$

so LB = BL. This contradiction shows that $L_G = 1 = B_G$.

(3) L is a p-group for some prime p.

First note that $L^G \simeq L^G/L_G$ is quasinilpotent since T = G, $L_G = 1$ and $L \in \mathcal{L}_{\mathfrak{N}^*}(T) = \mathcal{L}_{\mathfrak{N}^*}(G)$ by claims (1) and (2). Therefore, for every proper subnormal subgroup V of L, we have $V \in \mathcal{L}_{\mathfrak{N}^*}(T)$, so VB = BV. Since $LB \neq BL$, it follows that L has a normal subgroup W such that L/W is simple and every proper subnormal subgroup of L is contained in W.

By [6, Chapter X, Theorem 13.6], either $L/F(L) = A_1 \times \cdots \times A_t$ for some non-abelian simple groups A_1, \ldots, A_t or L = F(L) is nilpotent. In the former case, we have t = 1 and W = F(L), so L = L' is perfect, and hence LB = BL by Lemma 3.4. Therefore, we have the second case, so L is a cyclic p-group for some prime p.

(4) $G = O_p(G)B$. (Since L is a subnormal p-subgroup of G by claim (3), this follows from Lemma 3.3 (1) and claim (1).)

The final contradiction for the necessity. Since B is subnormal in G and |G : B| is a power of p by claim (4), G/B_G is a p-group by Lemma 3.3 (2). But then G is a p-group by claim (2). Hence $\mathcal{L}(G) = \mathcal{L}_{sn}(G)$ is modular. Therefore, LB = BL by [9, Lemma 2.3.2]. This contradiction completes the proof of the necessity.

Sufficiency. Suppose that this is false, and let G be a counterexample of minimal order. The hypothesis holds for every proper subnormal subgroup V of G, so the lattice $\mathcal{L}_{sn}(V)$ is modular by the choice of G.

First we show that the lattice $\mathcal{L}_{sn}(G)$ is upper semimodular. In view of [9, p. 46], it is enough to show that if $A, B \in \mathcal{L}_{sn}(G)$ such that A and B cover $A \cap B$ in $\mathcal{L}_{sn}(G)$, then $\langle A, B \rangle$ covers A in $\mathcal{L}_{sn}(G)$. Assume that this is false.

(1) $G = \langle A, B \rangle$.

Suppose that $\langle A, B \rangle < G$. Then the lattice $\mathcal{L}_{sn}(\langle A, B \rangle)$ is modular. Hence this lattice is upper semimodular by [9, Theorem 2.1.10], so $\langle A, B \rangle$ covers A, a contradiction. Hence we have (1).

(2) $AB \neq BA$.

Indeed, if AB = BA, then G = AB by claim (1). Hence, for every subgroup $T \in \mathcal{L}_{sn}(G)$ satisfying $A \leq T \leq G$, we have

$$T = A(T \cap B)$$
 and either $T \cap B = B$ or $A \cap B = T \cap B$.

But then, in the former case, we have $T = A(T \cap B) = A(A \cap B) = A$. In the second case, we have T = G. Hence $G = \langle A, B \rangle$ covers A, a contradiction. Hence we have (2).

(3) $A \cap B = 1$. Hence A and B are minimal subnormal subgroups of G.

Let $N = A \cap B$. We show that N = 1. Suppose that $N \neq 1$. Note that, in view of claim (1), $G = \langle A, B \rangle \leq N_G(N)$ since A and B cover N in $\mathcal{L}_{sn}(G)$. Now let L/N, B/N and T/N be subnormal subgroups of G/N such that

 $L/N, B/N \leq T/N$ and $L/N \in \mathcal{L}_{\mathfrak{N}^*}(T/N).$

Then *L*, *B* and *T* are subnormal subgroups of *G* such that $B \le T$ and $L \in \mathcal{L}_{\mathfrak{R}^*}(T)$ by Lemma 3.2 (3). Then LB = BL by hypothesis, so

$$(L/N)(B/N) = (B/N)(L/N).$$

Hence the hypothesis holds for G/N, so the lattice $\mathcal{L}_{sn}(G/N)$ is modular by the choice of *G*. Therefore, $G/N = \langle A, B \rangle / N$ covers A/N in $\mathcal{L}_{sn}(G/N)$, and hence $G = \langle A, B \rangle$ covers *A* in $\mathcal{L}_{sn}(G)$. This contradiction shows that N = 1, so *A* and *B* are minimal subnormal subgroups of *G*.

The final contradiction for the sufficiency. In view of claim (3), A and B are simple groups. If A = A' is perfect, then AB = BA by Lemma 3.4, contrary to claim (2). Hence A is abelian, so $A \leq O_p(G)$ for some prime p, which implies that $A \in \mathcal{L}_{\mathfrak{N}^*}(G)$. But then AB = BA by hypothesis. This contradiction shows that the lattice $\mathcal{L}_{sn}(G)$ is upper semimodular. On the other hand, this lattice is lower semimodular by [9, Theorem 2.1.8]. From [9, Theorem 2.1.10], we get now that the lattice $\mathcal{L}_{sn}(G)$ is modular, contrary to the choice of G. Therefore, the sufficiency of the condition of the theorem is true.

Acknowledgments. The authors are very grateful to the helpful suggestions of the referee.

Bibliography

- [1] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, *Products of Finite Groups*, Walter de Gruyter, Berlin, 2010.
- [2] A. Ballester-Bolinches and L. M. Ezquerro, *Classes of Finite Groups*, Springer, Dordrecht, 2006.
- [3] W.E. Deskins, On quasinormal subgroups of finite groups, *Math. Z.* 82 (1963), 125–132.
- [4] K. Doerk and T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin, 1992.
- [5] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg, 2015.
- [6] B. Huppert and N. Blackburn, Finite Groups. III, Springer, Berlin, 1982.

- [7] O. Kegel, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, *Math. Z.* **78** (1962), 205–221.
- [8] R. Maier and P. Schmid, The embedding of permutable subgroups in finite groups, *Math. Z.* 131 (1973), 269–272.
- [9] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994.
- [10] L.A. Shemetkov and A.N. Skiba, *Formations of Algebraic Systems*, Nauka, Moscow, 1989.
- [11] H. Wielandt, Vertauschbare nachinvariante Untergruppen, *Abh. Math. Semin. Univ. Hamburg* **21** (1957), no. 1–2, 55–62.

Received February 23, 2019; revised April 25, 2019.

Author information

Zhang Chi, School of Mathematics, China University of Mining and Technology, Xuzhou 221116, P. R. China. E-mail: zcqxj32@mail.ustc.edu.cn

Alexander N. Skiba, Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, Gomel 246019, Belarus. E-mail: alexander.skiba490gmail.com