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Abstract

Let H and B be subgroups of a finite group G such that G = NG(H)B. Then we say that H
is quasipermutable (respectively S-quasipermutable) in G provided H permutes with B and with
every subgroup (respectively with every Sylow subgroup) A of B such that (|H |, |A|) = 1. In
this paper we analyze the influence of S-quasipermutable and quasipermutable subgroups on the
structure of G. As an application, we give new characterizations of soluble PST -groups.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover p is

always supposed to be a prime and π is a subset of the set P of all primes; π(G) denotes the set of

all primes dividing |G|.

A subgroup H of G is said to be quasinormal or permutable in G if H permutes with every

subgroup A of G, that is, HA = AH; H is said to be S-permutable in G if H permutes with every

Sylow subgroup of G.

A group G is called a PT -group if permutability is a transitive relation on G, that is, every

permutable subgroup of a permutable subgroup of G is permutable in G. A group G is called a

PST -group if S-permutability is a transitive relation on G.

As well as T -groups, PT -groups and PST -groups possess many interesting properties (see Chap-

ter 2 in [1]). The general description of PT -groups and PST -groups were firstly obtained by Zacher

[2] and Agrawal [3], for the soluble case, and by Robinson in [4], for the general case. Nevertheless,
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in the further publications, the authors (see for example recent papers[5]– [16]) have found out and

described many other interesting characterizations of soluble PT and PST -groups.

In this paper we give new ”Hall”-characterizations of soluble PST -groups on the basis of the

following

Definition 1.1. We say that a subgroup H is quasipermutable (respectively S-quasipermutable)

in G provided H permutes with B and with every subgroup (respectively with every Sylow subgroup)

A of B such that (|H|, |A|) = 1.

Examples and some applications of quasipermutable subgroups were discussed in our papers [17]

and [18] (see also remarks in Section 5 below). In this paper, we give the following result, which we

consider as one more motivation for introducing the concept of quasipermutability.

Theorem A. Let D = GN and π = π(D). Then the following statements are equivalent:

(i) D is a Hall subgroup of G and every Hall subgroup of G is quasipermutable in G.

(ii) G is a soluble PST -group.

(iii) Every subgroup of G is quasipermutable in G.

(iv) Every π-subgroup of G and some minimal supplement of D in G are quasipermutable in G.

In the proof Theorem A we use the next three our results.

A subgroup S of G is called a Gaschütz subgroup of G (L.A. Shemetkov [19, IV, 15.3]) if S is

supersoluble and for any subgroups K ≤ H of G, where S ≤ K, the number |H : K| is not prime.

Theorem B. The following statements are equivalent:

(I) G is soluble, and if S is a Gaschütz subgroup of G, then every Hall subgroup H of G satisfying

π(H) ⊆ π(S) is quasipermutable in G.

(II) G is supersoluble and the following hold:

(a) G = DC, where D = GN is an abelian complemented subgroup of G and C is a Carter

subgroup of G;

(b) D ∩ C is normal in G and (p, |D/D ∩ C|) = 1 for all prime divisors p of |G| satisfying

(p− 1, |G|) = 1.

(c) For any non-empty set π of primes, every π-element of any Carter subgroup of G induces a

power automorphism on the Hall π′-subgroup of D.

(III) Every Hall subgroup of G is quasipermutable in G.

Let F be a class of groups. If 1 ∈ F, then we write GF to denote the intersection of all normal

subgroups N of G with G/N ∈ F. The class F is said to be a formation if either F = ∅ or 1 ∈ F

and every homomorphic image of G/GF belongs to F for any group G. The formation F is said to

be saturated if G ∈ F whenever G/Φ(G) ∈ F. A subgroup H of G is said to be an F-projector of G

provided H ∈ F and E = EFH for any subgroup E of G containing H. By the Gaschütz’s theorem
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[20, VI, 9.5.4 and 9.5.6], for any saturated formation F, every soluble group G has an F-projector

and any two F-projectors of G are conjugate.

Theorem C. Let F be a saturated formation containing all nilpotent groups. Suppose that G

is soluble and let π = π(C) ∩ π(GF), where C is an F-projector of G. If every maximal subgroup of

every Sylow p-subgroup of G is S-quasipermutable in G for all p ∈ π, then GF is a Hall subgroup of

G.

Theorem D. Let F be a saturated formation containing all supersoluble groups and π =

π(F ∗(GF)). If GF 6= 1, then for some p ∈ π some maximal subgroup of a Sylow p-subgroup of

G is not S-quasipermutable in G.

In this theorem F ∗(GF) denotes the generalized Fitting subgroup of GF, that is, the product of

all normal quasinilpotent subgroups of GF.

The main tool in the proofs of Theorems C and D is the following our result.

Proposition. Let E be a normal subgroup of G and P a Sylow p-subgroup of E such that

|P | > p.

(i) If every number V of some fixed Mφ(P ) is S-quasipermutable in G, then E is p-supersoluble.

(ii) If every maximal subgroup of P is S-quasipermutable in G, then every chief factor of G

between E and Op′(E) is cyclic.

(iii) If every maximal subgroup of every Sylow subgroup of E is S-quasipermutable in G, then

every chief factor of G below E is cyclic.

In this proposition we write Mφ(G), by analogy with [21], to denote a set of maximal subgroups

of G such that Φ(G) coincides with the intersection of all subgroups in Mφ(G).

Note that Proposition may be independently interesting because this result unifies and generalize

many known results, and in particular, Theorems 1.1–1.5 in [21] (see Section 5). In Section 5 we

discus also some further applications of the results.

All unexplained notation and terminology are standard. The reader is referred to [19], [22], or

[23] if necessary.

2 Basic Propositions

Let H be a subgroup of G. Then we say, following [17], that H is propermutable (respectively S-

propermutable) in G provided there is a subgroup B of G such that G = NG(H)B and H permutes

with all subgroups (respectively with all Sylow subgroups) of B.

Proposition 2.1. Let H ≤ G and N a normal subgroup of G. Suppose that H is quasiper-

mutable (S-quasipermutable) in G.

(1) If either H is a Hall subgroup of G or for every prime p dividing |H| and for every Sy-
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low p-subgroup Hp of H we have Hp � N , then HN/N is quasipermutable (S-quasipermutable,

respectively) in G/N .

(2) If π = π(H) and G is π-soluble, then H permutes with some Hall π′-subgroup of G.

(3) H permutes with some Sylow p-subgroup of G for every prime p dividing |G| such that

(p, |H|) = 1.

(4) |G : NG(H ∩N)| is a π-number, where π = π(N) ∪ π(H).

(5) IfH is propermutable (S-propermutable) inG, thenHN/N is propermutable (S-propermutable,

respectively) in G/N .

(6) If H is S-propermutable in G, then H permutes with some Sylow p-subgroup of G for any

prime p dividing |G|.

(7) Suppose that G is π-soluble. If H is a Hall π-subgroup of G, then H is propermutable

(S-propermutable, respectively) in G.

Proof. By hypothesis, there is a subgroup B of G such that G = NG(H)B and H permutes with

B and with all subgroups (with all Sylow subgroups, respectively) A of B such that (|H|, |A|) = 1.

(1) It is clear that

G/N = (NG(H)N/N)(BN/N) = NG/N (HN/N)(BN/N).

LetK/N be any subgroup (any Sylow subgroup, respectively) of BN/N such that (|HN/N |, |K/N |) =

1. Then K = (K ∩ B)N . Let B0 be a minimal supplement of K ∩ B ∩ N to K ∩ B. Then

K/N = (K ∩ B)N/N = B0(K ∩ B ∩ N)N/N = B0N/N and K ∩ B ∩ N ∩ B0 = N ∩ B0 ≤ Φ(B0).

Therefore π(K/N) = π(K ∩ B/K ∩ B ∩ N) = π(B0), so (|HN/N |, |B0|) = 1. Suppose that some

prime p ∈ π(B0) divides |H|, and let Hp be a Sylow p-subgroup of H. We shall show that Hp � N .

In fact, we may suppose that H is a Hall subgroup of G. But in this case, Hp is a Sylow p-subgroup

of G. Therefore, since p ∈ π(B0) ⊆ π(G/N), Hp � N . Hence p divides |HN/N |, a contradiction.

Thus (|H|, |B0|) = 1, so in the case, when H is quasipermutable in G, we have HB0 = B0H and

hence HN/N permutes with K/N = B0N/N . Thus HN/N is quasipermutable in G/N .

Finally, suppose that H is S-quasipermutable in N . In this case, B0 is a p-subgroup of B, so for

some Sylow p-subgroupBp of B we have B0 ≤ Bp and (|H|, p) = 1. HenceK/N = B0N/N ≤ BpN/N ,

which implies that K/N = BpN/N . But H permutes with Bp by hypothesis, so HN/N permutes

with K/N . Therefore HN/N is S-quasipermutable in G/N .

(2) By [20, VI, 4.6], there are Hall π′-subgroups E1, E2 and E of NG(H), B and G, respectively,

such that E = E1E2. Then H permutes with all Sylow subgroups of E2 by hypothesis, so

HE = H(E1E2) = (HE1)E2 = (E1H)E2 =

E1(HE2) = E1(E2H) = (E1E2)H = EH
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by [22, A, 1.6].

(3) See the proof of (2).

(4) Let p be a prime such that p 6∈ π. Then by (3), there is a Sylow p-subgroup P of G such that

HP = PH is a subgroup of G. Hence HP ∩N = H ∩N is a normal subgroup of HP . Thus p does

not divide |G : NG(H ∩N)|.

(5) See the proof of (1).

(6) See the proof of (2).

(7) Since G is π-soluble, B is π-soluble. Hence by [20, VI, 1.7], B = BπBπ′ where Bπ is a

Hall π-subgroup of B and Bπ′ is a Hall π′-subgroup of B. By [20, VI, 4.6], there are Hall π-

subgroups Nπ, Bπ and Gπ of NG(H), B and G, respectively, such that Gπ = NπBπ. But since

H ≤ Nπ, Nπ is a Hall π-subgroup of G. Therefore Gπ = NπBπ = Nπ, so Bπ ≤ Nπ. Hence

G = NG(H)B = NG(H)BπBπ′ = NG(H)Bπ′ , so H is propermutable (S-propermutble, respectively)

in G.

A group G is said to be a Cπ-group provided G has a Hall π-subgroup and any two Hall π-

subgroups of G are conjugate.

On the basis of Proposition 2.1 the following two results are proved.

Proposition 2.2. Let H be a Hall S-quasipermutable subgroup of G. If π = π(|G : H|), then

G is a Cπ-group.

Proposition 2.3. Let E be a normal subgroup of G and H a Hall π-subgroup of E. If H is

nilpotent and S-quasipermutable in G, then E is π-soluble.

3 Groups with a Hall quasipermutable subgroup

A group G is said to be π-separable if every chief factor of G is either a π-group or a π′-group. Every

π-separable group G has a series

1 = P0(G) ≤ M0(G) < P1(G) < M1(G) < . . . < Pt(G) ≤ Mt(G) = G

such that

Mi(G)/Pi(G) = Oπ′(G/Pi(G))

(i = 0, 1, . . . , t) and

Pi+1(G)/Mi(G) = Oπ(G/Mi(G))

(i = 1, . . . , t)

The number t is called the π-length of G and denoted by lπ(G) (see [34, p. 249]).

One more result, which we use use in the proof of our main results, is the following
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Theorem 3.1. LetH be a Hall subgroup ofG and π = π(H). Suppose thatH is quasipermutable

in G.

(I) If p > q for all primes p and q such that p ∈ π and q divides |G : NG(H)|, then H is normal

in G.

(II) If H is supersoluble, then G is π-soluble.

(III) If H is π-separable, then the following fold:

(i) H ′ ≤ Oπ(G). If, in addition, NG(H) is nilpotent, then G′ ∩H ≤ Oπ(G).

(ii) lπ(G) ≤ 2 and lπ′(G) ≤ 2.

(iii) If for some prime p ∈ π′ a Hall π′-subgroupE ofG is p-supersoluble, then G is p-supersoluble.

Let M and H be non-empty formations. Then the product MH of these formations is the class of

all groups G such that GH ∈ M. It is well-known that such an operation on the set of all non-empty

formations is associative (Gaschütz). The symbol Mt denotes the product of t copies of M.

We shall need following well-known Gaschütz-Shemetkov’s theorem [26, Corollary 7.13].

Lemma 3.2. The product of any two non-empty saturated formations is also a saturated for-

mation.

In in the proof of Theorem 3.1 we use the following

Lemma 3.3. The class F of all π-separable groups G with lπ(G) ≤ t is a saturated formation.

Proof. It is not difficult to show that for any non-empty set ω ⊆ P the class Gω of all ω-groups

is a saturated formation and that F = (Gπ′Gπ)
tGπ′ . Hence F is a saturated formation by Lemma 3.2.

Lemma 3.4. Suppose that G is separable. If Hall π-subgroups of G are abelian, then lπ(G) ≤ 1.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Let N

be a minimal normal subgroup of G. Since G is π-separable, N is a π-group or a π′-group. It is clear

that the hypothesis holds for G/N , so lπ(G/N) ≤ 1 by the choice of G. By Lemma 3.3, the class

of all π-soluble groups with lπ(G) ≤ 1 is a saturated formation. Therefore N is a unique minimal

normal subgroup of G, N � Φ(G) and N is not a π′-group. Hence N is a π-group and N = CG(N)

by [22, A, 15.2]. Therefore N ≤ H, where H is a Hall π-subgroup of G. But since H is abelian,

N = H is a Hall π-subgroup of G. Hence lπ(G) ≤ 1.

A group G is called π-closed provided G has a normal Hall π-subgroup.

Lemma 3.5. Let H be a Hall π-subgroup of G. If G is π-separable and H ≤ Z(NG(H)), then

G is π′-closed.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Then

G 6= H. The class F of all π′-closed groups coincides with the product Gπ′Gπ. Hence F is a saturated

formation by Lemma 3.2. Let N be a minimal normal subgroup of G. Since G is π-separable, N

is a π-group or a π′-group. Moreover, G is a Cπ-group by [34, 9.1.6]), so the hypothesis holds for
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G/N . Hence G/N is π′-closed by the choice of G. Therefore N is the only minimal normal subgroup

of G, N � Φ(G) and N is a π-group. Therefore N ≤ H and N = CG(N) by [22, A, 15.2]. Since

H ≤ Z(NG(H)) and H is a Hall π-subgroup of G, N = H. Therefore N ≤ Z(G), which implies that

N = H = G. This contradiction completes the proof of the lemma.

4 Proof of Theorem A

Recall that G is a PST -group if and only if G = D⋊M , where D = GN is abelian Hall subgroup

of G and every element x ∈ M induces a power automorphism on D [3]. Therefore the implication

(i) ⇒ (ii) is a direct corollary of Theorem B.

Now suppose that G = D⋊M , where D = GN, is a soluble PST -group. Let H be any subgroup

of G and S a Hall π′-subgroup of H. Since G is soluble, we may assume without loss of generality

that S ≤ M . Hence H = (D ∩H)(M ∩H) = (D ∩H)S and D ∩H is normal in G. Let π1 = π(S).

Let A be a Hall π1-subgroup of M and E a complement to A in M . Then E ≤ CG(S). Therefore

G = DM = DAE = NG(H)(DA) and every subgroup L of DA satisfying (|H|, |L|) = 1 is contained

in D. Thus H is quasipermutablein G. Thus (ii) ⇒ (iii).

(iv) ⇒ (ii) By Theorems C and D, G is supersoluble and D is a Hall subgroup of G. Therefore

G = D⋊W , where W is a Hall π′-subgroup of G. By hypothesis, W is quasipermutable in G. Now

arguing similarly as in the proof of Theorem B one can show that D is abelian and every subgroup

of D is normal in G. Therefore G is a PST -group.

5 Final remarks

1. The subgroup S3 is quasipermutable, S-propermutable and not propermutable in S4. If H is

the subgroup of order 3 in S3, then H is S-quasipermutable and not quasipermutable in S4.

2. Arguing similarly to the proof of Theorem A one can prove the following fact.

Theorem 5.1. Suppose that G is soluble and let π = π(GN). Then G is a PST -group if and

only if every subnormal π-subgroup and a Hall π′-subgroup of G are propermutable in G.

3. If G is metanilpotent, that is G/F (G) is nilpotent, then for every Hall subgroup E of G we

have G = NG(E)F (G). Therefore, in this case, every characteristic subgroup of every Hall subgroup

of G is S-propermutable in G. In particular, every Hall subgroup of every supersoluble group is

S-propermutable. This observation makes natural the following question: What is the structure of

G under the hypothesis that every Hall subgroup of G is propermutable in G ? Theorem B gives an

answer to this question.
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4. Every maximal subgroup of a supersoluble group is quasipermutable. Therefore, in fact,

Theorem A shows that the class of all soluble groups in which quaipermutability is a transitive

relation coincides with the class of all soluble PST -groups.

5. We say that G is a SQT -group if S-quasipermutability is a transitive relation in G. Arguing

similarly to the proof of Theorem A one can prove the following fact.

Theorem 5.2. A soluble group G is an SQT -group if and only if G = D ⋊M is supersoluble,

where D andM are Hall nilpotent subgroups of G and the index |G : DNG(H∩D)| is a π(H)-number

for every subgroup H of G.

6. A subgroup H of G is called SS-quasinormal [21] (semi-normal [33]) in G provided G has

a subgroup B such that HB = G and H permutes with all Sylow subgroups (H permutes with all

subgroups, respectively) of B.

It is clear that every SS-quasinormal subgroup is S-propermutable and every semi-normal sub-

group is propermutable. Moreover, there are simple examples (consider, for example, the group

C7 ⋊ Aut(C7), where C7 is a group of order 7) which show that, in general, the class of all S-

propermutable subgroups of G is wider than the class of all its SS-quasinormal subgroups and the

class of all propermutable subgroups of G is wider than the class of all its semi-normal subgroups.

Therefore Proposition covers main results (Theorems 1.1–1.5) in [21].

7. Theorem 3.1 is used in the proof of Theorem B. From this result we also get

Corollary 5.3 (See [35, Theorem 5.4]). Let H be a Hall semi-normal subgroup of G. If p > q

for all primes p and q such that p divides |H| and q divides |G : H|, then H is normal in G.

Corollary 5.4 (See [36, Theorem]). Let P be a Sylow p-subgroup of G. If P is semi-normal in

G, then the following statements hold:

(i) G is p-soluble and P ′ ≤ Op(G).

(ii) lp(G) ≤ 2.

(iiii If for some prime q ∈ π′ a Hall p′-subgroup of G is q-supersoluble, then G is q-supersoluble.

Corollary 5.5 (See [37, Theorem 3]). If a Sylow p-subgroup P of G, where p is the largest prime

dividing |G|, is semi-normal in G, then P is normal in G.
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