Some new characterizations of PST-groups

Xiaolan Yi

Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, P.R.China E-mail: yixiaolan2005@126.com

Alexander N. Skiba Department of Mathematics, Francisk Skorina Gomel State University, Gomel 246019, Belarus E-mail: alexander.skiba49@gmail.com

Abstract

Let H and B be subgroups of a finite group G such that $G = N_G(H)B$. Then we say that H is *quasipermutable* (respectively *S*-quasipermutable) in G provided H permutes with B and with every subgroup (respectively with every Sylow subgroup) A of B such that (|H|, |A|) = 1. In this paper we analyze the influence of S-quasipermutable and quasipermutable subgroups on the structure of G. As an application, we give new characterizations of soluble PST-groups.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover p is always supposed to be a prime and π is a subset of the set \mathbb{P} of all primes; $\pi(G)$ denotes the set of all primes dividing |G|.

A subgroup H of G is said to be *quasinormal* or *permutable* in G if H permutes with every subgroup A of G, that is, HA = AH; H is said to be *S*-permutable in G if H permutes with every Sylow subgroup of G.

A group G is called a PT-group if permutability is a transitive relation on G, that is, every permutable subgroup of a permutable subgroup of G is permutable in G. A group G is called a PST-group if S-permutability is a transitive relation on G.

As well as T-groups, PT-groups and PST-groups possess many interesting properties (see Chapter 2 in [1]). The general description of PT-groups and PST-groups were firstly obtained by Zacher [2] and Agrawal [3], for the soluble case, and by Robinson in [4], for the general case. Nevertheless,

Keywords: finite group, quasipermutable subgroup, PST-group, Hall subgroup, supersoluble group, Gaschütz subgroup, Carter subgroup, saturated formation.

Mathematics Subject Classification (2010): 20D10, 20D15, 20D20

in the further publications, the authors (see for example recent papers[5]–[16]) have found out and described many other interesting characterizations of soluble PT and PST-groups.

In this paper we give new "Hall"-characterizations of soluble PST-groups on the basis of the following

Definition 1.1. We say that a subgroup H is quasipermutable (respectively S-quasipermutable) in G provided H permutes with B and with every subgroup (respectively with every Sylow subgroup) A of B such that (|H|, |A|) = 1.

Examples and some applications of quasipermutable subgroups were discussed in our papers [17] and [18] (see also remarks in Section 5 below). In this paper, we give the following result, which we consider as one more motivation for introducing the concept of quasipermutability.

Theorem A. Let $D = G^{\mathbb{N}}$ and $\pi = \pi(D)$. Then the following statements are equivalent:

(i) D is a Hall subgroup of G and every Hall subgroup of G is quasipermutable in G.

(ii) G is a soluble PST-group.

(iii) Every subgroup of G is quasipermutable in G.

(iv) Every π -subgroup of G and some minimal supplement of D in G are quasipermutable in G.

In the proof Theorem A we use the next three our results.

A subgroup S of G is called a *Gaschütz* subgroup of G (L.A. Shemetkov [19, IV, 15.3]) if S is supersoluble and for any subgroups $K \leq H$ of G, where $S \leq K$, the number |H:K| is not prime.

Theorem B. The following statements are equivalent:

(I) G is soluble, and if S is a Gaschütz subgroup of G, then every Hall subgroup H of G satisfying $\pi(H) \subseteq \pi(S)$ is quasipermutable in G.

(II) G is supersoluble and the following hold:

(a) G = DC, where $D = G^{\mathbb{N}}$ is an abelian complemented subgroup of G and C is a Carter subgroup of G;

(b) $D \cap C$ is normal in G and $(p, |D/D \cap C|) = 1$ for all prime divisors p of |G| satisfying (p-1, |G|) = 1.

(c) For any non-empty set π of primes, every π -element of any Carter subgroup of G induces a power automorphism on the Hall π' -subgroup of D.

(III) Every Hall subgroup of G is quasipermutable in G.

Let \mathcal{F} be a class of groups. If $1 \in \mathcal{F}$, then we write $G^{\mathcal{F}}$ to denote the intersection of all normal subgroups N of G with $G/N \in \mathcal{F}$. The class \mathcal{F} is said to be a *formation* if either $\mathcal{F} = \emptyset$ or $1 \in \mathcal{F}$ and every homomorphic image of $G/G^{\mathcal{F}}$ belongs to \mathcal{F} for any group G. The formation \mathcal{F} is said to be *saturated* if $G \in \mathcal{F}$ whenever $G/\Phi(G) \in \mathcal{F}$. A subgroup H of G is said to be an \mathcal{F} -projector of Gprovided $H \in \mathcal{F}$ and $E = E^{\mathcal{F}}H$ for any subgroup E of G containing H. By the Gaschütz's theorem [20, VI, 9.5.4 and 9.5.6], for any saturated formation \mathcal{F} , every soluble group G has an \mathcal{F} -projector and any two \mathcal{F} -projectors of G are conjugate.

Theorem C. Let \mathcal{F} be a saturated formation containing all nilpotent groups. Suppose that G is soluble and let $\pi = \pi(C) \cap \pi(G^{\mathcal{F}})$, where C is an \mathcal{F} -projector of G. If every maximal subgroup of every Sylow *p*-subgroup of G is S-quasipermutable in G for all $p \in \pi$, then $G^{\mathcal{F}}$ is a Hall subgroup of G.

Theorem D. Let \mathcal{F} be a saturated formation containing all supersoluble groups and $\pi = \pi(F^*(G^{\mathcal{F}}))$. If $G^{\mathcal{F}} \neq 1$, then for some $p \in \pi$ some maximal subgroup of a Sylow *p*-subgroup of *G* is not *S*-quasipermutable in *G*.

In this theorem $F^*(G^{\mathcal{F}})$ denotes the generalized Fitting subgroup of $G^{\mathcal{F}}$, that is, the product of all normal quasinilpotent subgroups of $G^{\mathcal{F}}$.

The main tool in the proofs of Theorems C and D is the following our result.

Proposition. Let E be a normal subgroup of G and P a Sylow p-subgroup of E such that |P| > p.

(i) If every number V of some fixed $\mathcal{M}_{\phi}(P)$ is S-quasipermutable in G, then E is p-supersoluble.

(ii) If every maximal subgroup of P is S-quasipermutable in G, then every chief factor of G between E and $O_{p'}(E)$ is cyclic.

(iii) If every maximal subgroup of every Sylow subgroup of E is S-quasipermutable in G, then every chief factor of G below E is cyclic.

In this proposition we write $\mathcal{M}_{\phi}(G)$, by analogy with [21], to denote a set of maximal subgroups of G such that $\Phi(G)$ coincides with the intersection of all subgroups in $\mathcal{M}_{\phi}(G)$.

Note that Proposition may be independently interesting because this result unifies and generalize many known results, and in particular, Theorems 1.1–1.5 in [21] (see Section 5). In Section 5 we discus also some further applications of the results.

All unexplained notation and terminology are standard. The reader is referred to [19], [22], or [23] if necessary.

2 Basic Propositions

Let H be a subgroup of G. Then we say, following [17], that H is propermutable (respectively *S*-propermutable) in G provided there is a subgroup B of G such that $G = N_G(H)B$ and H permutes with all subgroups (respectively with all Sylow subgroups) of B.

Proposition 2.1. Let $H \leq G$ and N a normal subgroup of G. Suppose that H is quasipermutable (S-quasipermutable) in G.

(1) If either H is a Hall subgroup of G or for every prime p dividing |H| and for every Sy-

low p-subgroup H_p of H we have $H_p \leq N$, then HN/N is quasipermutable (S-quasipermutable, respectively) in G/N.

(2) If $\pi = \pi(H)$ and G is π -soluble, then H permutes with some Hall π' -subgroup of G.

(3) *H* permutes with some Sylow *p*-subgroup of *G* for every prime *p* dividing |G| such that (p, |H|) = 1.

(4) $|G: N_G(H \cap N)|$ is a π -number, where $\pi = \pi(N) \cup \pi(H)$.

(5) If H is propermutable (S-propermutable) in G, then HN/N is propermutable (S-propermutable, respectively) in G/N.

(6) If H is S-propermutable in G, then H permutes with some Sylow p-subgroup of G for any prime p dividing |G|.

(7) Suppose that G is π -soluble. If H is a Hall π -subgroup of G, then H is propermutable (S-propermutable, respectively) in G.

Proof. By hypothesis, there is a subgroup B of G such that $G = N_G(H)B$ and H permutes with B and with all subgroups (with all Sylow subgroups, respectively) A of B such that (|H|, |A|) = 1.

(1) It is clear that

$$G/N = (N_G(H)N/N)(BN/N) = N_{G/N}(HN/N)(BN/N)$$

Let K/N be any subgroup (any Sylow subgroup, respectively) of BN/N such that (|HN/N|, |K/N|) = 1. Then $K = (K \cap B)N$. Let B_0 be a minimal supplement of $K \cap B \cap N$ to $K \cap B$. Then $K/N = (K \cap B)N/N = B_0(K \cap B \cap N)N/N = B_0N/N$ and $K \cap B \cap N \cap B_0 = N \cap B_0 \leq \Phi(B_0)$. Therefore $\pi(K/N) = \pi(K \cap B/K \cap B \cap N) = \pi(B_0)$, so $(|HN/N|, |B_0|) = 1$. Suppose that some prime $p \in \pi(B_0)$ divides |H|, and let H_p be a Sylow *p*-subgroup of *H*. We shall show that $H_p \not\leq N$. In fact, we may suppose that *H* is a Hall subgroup of *G*. But in this case, H_p is a Sylow *p*-subgroup of *G*. Therefore, since $p \in \pi(B_0) \subseteq \pi(G/N)$, $H_p \not\leq N$. Hence *p* divides |HN/N|, a contradiction. Thus $(|H|, |B_0|) = 1$, so in the case, when *H* is quasipermutable in *G*, we have $HB_0 = B_0H$ and hence HN/N permutes with $K/N = B_0N/N$. Thus HN/N is quasipermutable in *G*/N.

Finally, suppose that H is S-quasipermutable in N. In this case, B_0 is a p-subgroup of B, so for some Sylow p-subgroup B_p of B we have $B_0 \leq B_p$ and (|H|, p) = 1. Hence $K/N = B_0 N/N \leq B_p N/N$, which implies that $K/N = B_p N/N$. But H permutes with B_p by hypothesis, so HN/N permutes with K/N. Therefore HN/N is S-quasipermutable in G/N.

(2) By [20, VI, 4.6], there are Hall π' -subgroups E_1 , E_2 and E of $N_G(H)$, B and G, respectively, such that $E = E_1 E_2$. Then H permutes with all Sylow subgroups of E_2 by hypothesis, so

$$HE = H(E_1E_2) = (HE_1)E_2 = (E_1H)E_2 =$$
$$E_1(HE_2) = E_1(E_2H) = (E_1E_2)H = EH$$

by [22, A, 1.6].

(3) See the proof of (2).

(4) Let p be a prime such that $p \notin \pi$. Then by (3), there is a Sylow p-subgroup P of G such that HP = PH is a subgroup of G. Hence $HP \cap N = H \cap N$ is a normal subgroup of HP. Thus p does not divide $|G: N_G(H \cap N)|$.

- (5) See the proof of (1).
- (6) See the proof of (2).

(7) Since G is π -soluble, B is π -soluble. Hence by [20, VI, 1.7], $B = B_{\pi}B_{\pi'}$ where B_{π} is a Hall π -subgroup of B and $B_{\pi'}$ is a Hall π' -subgroup of B. By [20, VI, 4.6], there are Hall π -subgroups N_{π} , B_{π} and G_{π} of $N_G(H)$, B and G, respectively, such that $G_{\pi} = N_{\pi}B_{\pi}$. But since $H \leq N_{\pi}$, N_{π} is a Hall π -subgroup of G. Therefore $G_{\pi} = N_{\pi}B_{\pi} = N_{\pi}$, so $B_{\pi} \leq N_{\pi}$. Hence $G = N_G(H)B = N_G(H)B_{\pi}B_{\pi'} = N_G(H)B_{\pi'}$, so H is propermutable (S-propermutble, respectively) in G.

A group G is said to be a C_{π} -group provided G has a Hall π -subgroup and any two Hall π subgroups of G are conjugate.

On the basis of Proposition 2.1 the following two results are proved.

Proposition 2.2. Let *H* be a Hall *S*-quasipermutable subgroup of *G*. If $\pi = \pi(|G:H|)$, then *G* is a C_{π} -group.

Proposition 2.3. Let *E* be a normal subgroup of *G* and *H* a Hall π -subgroup of *E*. If *H* is nilpotent and *S*-quasipermutable in *G*, then *E* is π -soluble.

3 Groups with a Hall quasipermutable subgroup

A group G is said to be π -separable if every chief factor of G is either a π -group or a π' -group. Every π -separable group G has a series

$$1 = P_0(G) \le M_0(G) < P_1(G) < M_1(G) < \dots < P_t(G) \le M_t(G) = G$$

such that

$$M_i(G)/P_i(G) = O_{\pi'}(G/P_i(G))$$

 $(i = 0, 1, \dots, t)$ and

$$P_{i+1}(G)/M_i(G) = O_{\pi}(G/M_i(G))$$

 $(i=1,\ldots,t)$

The number t is called the π -length of G and denoted by $l_{\pi}(G)$ (see [34, p. 249]).

One more result, which we use use in the proof of our main results, is the following

Theorem 3.1. Let *H* be a Hall subgroup of *G* and $\pi = \pi(H)$. Suppose that *H* is quasipermutable in *G*.

(I) If p > q for all primes p and q such that $p \in \pi$ and q divides $|G : N_G(H)|$, then H is normal in G.

- (II) If H is supersoluble, then G is π -soluble.
- (III) If H is π -separable, then the following fold:
- (i) $H' \leq O_{\pi}(G)$. If, in addition, $N_G(H)$ is nilpotent, then $G' \cap H \leq O_{\pi}(G)$.
- (ii) $l_{\pi}(G) \leq 2$ and $l_{\pi'}(G) \leq 2$.
- (iii) If for some prime $p \in \pi'$ a Hall π' -subgroup E of G is p-supersoluble, then G is p-supersoluble.

Let \mathcal{M} and \mathcal{H} be non-empty formations. Then the *product* \mathcal{MH} of these formations is the class of all groups G such that $G^{\mathcal{H}} \in \mathcal{M}$. It is well-known that such an operation on the set of all non-empty formations is associative (Gaschütz). The symbol \mathcal{M}^t denotes the product of t copies of \mathcal{M} .

We shall need following well-known Gaschütz-Shemetkov's theorem [26, Corollary 7.13].

Lemma 3.2. The product of any two non-empty saturated formations is also a saturated formation.

In in the proof of Theorem 3.1 we use the following

Lemma 3.3. The class \mathfrak{F} of all π -separable groups G with $l_{\pi}(G) \leq t$ is a saturated formation.

Proof. It is not difficult to show that for any non-empty set $\omega \subseteq \mathbb{P}$ the class \mathcal{G}_{ω} of all ω -groups is a saturated formation and that $\mathcal{F} = (\mathcal{G}_{\pi'}\mathcal{G}_{\pi})^t \mathcal{G}_{\pi'}$. Hence \mathcal{F} is a saturated formation by Lemma 3.2.

Lemma 3.4. Suppose that G is separable. If Hall π -subgroups of G are abelian, then $l_{\pi}(G) \leq 1$.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Let N be a minimal normal subgroup of G. Since G is π -separable, N is a π -group or a π' -group. It is clear that the hypothesis holds for G/N, so $l_{\pi}(G/N) \leq 1$ by the choice of G. By Lemma 3.3, the class of all π -soluble groups with $l_{\pi}(G) \leq 1$ is a saturated formation. Therefore N is a unique minimal normal subgroup of G, $N \nleq \Phi(G)$ and N is not a π' -group. Hence N is a π -group and $N = C_G(N)$ by [22, A, 15.2]. Therefore $N \leq H$, where H is a Hall π -subgroup of G. But since H is abelian, N = H is a Hall π -subgroup of G. Hence $l_{\pi}(G) \leq 1$.

A group G is called π -closed provided G has a normal Hall π -subgroup.

Lemma 3.5. Let H be a Hall π -subgroup of G. If G is π -separable and $H \leq Z(N_G(H))$, then G is π' -closed.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Then $G \neq H$. The class \mathcal{F} of all π' -closed groups coincides with the product $\mathcal{G}_{\pi'}\mathcal{G}_{\pi}$. Hence \mathcal{F} is a saturated formation by Lemma 3.2. Let N be a minimal normal subgroup of G. Since G is π -separable, N is a π -group or a π' -group. Moreover, G is a C_{π} -group by [34, 9.1.6]), so the hypothesis holds for

G/N. Hence G/N is π' -closed by the choice of G. Therefore N is the only minimal normal subgroup of $G, N \not\leq \Phi(G)$ and N is a π -group. Therefore $N \leq H$ and $N = C_G(N)$ by [22, A, 15.2]. Since $H \leq Z(N_G(H))$ and H is a Hall π -subgroup of G, N = H. Therefore $N \leq Z(G)$, which implies that N = H = G. This contradiction completes the proof of the lemma.

4 Proof of Theorem A

Recall that G is a *PST*-group if and only if $G = D \rtimes M$, where $D = G^{\mathbb{N}}$ is abelian Hall subgroup of G and every element $x \in M$ induces a power automorphism on D [3]. Therefore the implication (i) \Rightarrow (ii) is a direct corollary of Theorem B.

Now suppose that $G = D \rtimes M$, where $D = G^{\mathbb{N}}$, is a soluble *PST*-group. Let *H* be any subgroup of *G* and *S* a Hall π' -subgroup of *H*. Since *G* is soluble, we may assume without loss of generality that $S \leq M$. Hence $H = (D \cap H)(M \cap H) = (D \cap H)S$ and $D \cap H$ is normal in *G*. Let $\pi_1 = \pi(S)$. Let *A* be a Hall π_1 -subgroup of *M* and *E* a complement to *A* in *M*. Then $E \leq C_G(S)$. Therefore $G = DM = DAE = N_G(H)(DA)$ and every subgroup *L* of *DA* satisfying (|H|, |L|) = 1 is contained in *D*. Thus *H* is quasipermutable *G*. Thus (ii) \Rightarrow (iii).

(iv) \Rightarrow (ii) By Theorems C and D, G is supersoluble and D is a Hall subgroup of G. Therefore $G = D \rtimes W$, where W is a Hall π' -subgroup of G. By hypothesis, W is quasipermutable in G. Now arguing similarly as in the proof of Theorem B one can show that D is abelian and every subgroup of D is normal in G. Therefore G is a *PST*-group.

5 Final remarks

1. The subgroup S_3 is quasipermutable, S-propermutable and not propermutable in S_4 . If H is the subgroup of order 3 in S_3 , then H is S-quasipermutable and not quasipermutable in S_4 .

2. Arguing similarly to the proof of Theorem A one can prove the following fact.

Theorem 5.1. Suppose that G is soluble and let $\pi = \pi(G^{\mathbb{N}})$. Then G is a PST-group if and only if every subnormal π -subgroup and a Hall π' -subgroup of G are propermutable in G.

3. If G is metanilpotent, that is G/F(G) is nilpotent, then for every Hall subgroup E of G we have $G = N_G(E)F(G)$. Therefore, in this case, every characteristic subgroup of every Hall subgroup of G is S-propermutable in G. In particular, every Hall subgroup of every supersoluble group is S-propermutable. This observation makes natural the following question: What is the structure of G under the hypothesis that every Hall subgroup of G is propermutable in G? Theorem B gives an answer to this question. 4. Every maximal subgroup of a supersoluble group is quasipermutable. Therefore, in fact, Theorem A shows that the class of all soluble groups in which quaipermutability is a transitive relation coincides with the class of all soluble *PST*-groups.

5. We say that G is a SQT-group if S-quasipermutability is a transitive relation in G. Arguing similarly to the proof of Theorem A one can prove the following fact.

Theorem 5.2. A soluble group G is an SQT-group if and only if $G = D \rtimes M$ is supersoluble, where D and M are Hall nilpotent subgroups of G and the index $|G : DN_G(H \cap D)|$ is a $\pi(H)$ -number for every subgroup H of G.

6. A subgroup H of G is called SS-quasinormal [21] (semi-normal [33]) in G provided G has a subgroup B such that HB = G and H permutes with all Sylow subgroups (H permutes with all subgroups, respectively) of B.

It is clear that every SS-quasinormal subgroup is S-propermutable and every semi-normal subgroup is propermutable. Moreover, there are simple examples (consider, for example, the group $C_7 \rtimes \operatorname{Aut}(C_7)$, where C_7 is a group of order 7) which show that, in general, the class of all Spropermutable subgroups of G is wider than the class of all its SS-quasinormal subgroups and the class of all propermutable subgroups of G is wider than the class of all its semi-normal subgroups. Therefore Proposition covers main results (Theorems 1.1–1.5) in [21].

7. Theorem 3.1 is used in the proof of Theorem B. From this result we also get

Corollary 5.3 (See [35, Theorem 5.4]). Let H be a Hall semi-normal subgroup of G. If p > q for all primes p and q such that p divides |H| and q divides |G : H|, then H is normal in G.

Corollary 5.4 (See [36, Theorem]). Let P be a Sylow p-subgroup of G. If P is semi-normal in G, then the following statements hold:

- (i) G is p-soluble and $P' \leq O_p(G)$.
- (ii) $l_p(G) \le 2$.

(iiii If for some prime $q \in \pi'$ a Hall p'-subgroup of G is q-supersoluble, then G is q-supersoluble.

Corollary 5.5 (See [37, Theorem 3]). If a Sylow p-subgroup P of G, where p is the largest prime dividing |G|, is semi-normal in G, then P is normal in G.

References

- A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin, New York, 2010.
- [2] G.Zacher, I gruppi risolubili finiti, in cu i i sottogruppi di compositione coincidono con i sottogrupi quasi-normali, Atti Accad. Naz. Lincei Rend. cl. Sci. Fis. Mat. Natur., (8) 37 (1964), 150–154.

- [3] R. K. Agrawal, , Proc. Amer. Math. Soc., 47 (1975), 77–83.
- [4] D.J.S. Robinson, The structure of finite groups in which permutability is a transitive relation, J. Austral. Math. Soc., 70 (2001), 143–159.
- [5] R.A. Brice, J. Cossey, The Wielandt subgroup of a finite soluble groups, J. London Math. Soc., 40 (1989), 244–256.
- [6] J.C. Beidleman, B. Brewster and D.J.S. Robinson, Criteria for permutability to Be Tratransitive in Finite Groups, J. Algebra, 222 (1999), 400–412.
- [7] A. Ballester-Bolinches, R. Esteban-Romero, Sylow permutable subnormal subgroups, J. Algebra, 251 (2002), 727–738.
- [8] A. Ballester-Bolinches, J.C. Beidleman, and H. Heineken, Groups in which Sylow subgroups and subnormal subgroups permute, *Illinois J. Math.*, 47 (2003), 63-69.
- [9] A. Ballester-Bolinches, J.C. Beidleman, and H. Heineken, A local approach to certain classes of finite groups, *Comm. Algebra*, **31** (2003), 5931–5942.
- [10] M. Asaad, Finite groups in which normality or quasinormality is transitive, Arch. Math (Basel),
 83 (4) (2004), 289–296.
- [11] A. Ballester-Bolinches, J. Cossey, Totally permutable products of finite groups satisfying SC or PST, Minatsh. Math., 145 (2005), 89–93.
- [12] K. Al-Sharo K.J. C. Beidleman J C, Heineken H, et al. Some Characterizations of Finite Groups in which Semipermutability is a Transitive Relation, *Forum Math.*, **22** (2010), 855–862.
- [13] V.O. Lukyanenko, A.N. Skiba, Finite groups in which τ -quasinormality is a transitive relation, Rend. Semin. Univ. Padova, **124** (2010), 231-246.
- [14] J. C. Beidleman, M. F. Ragland, Subnormal, permutable, and embedded subgroups in finite groups, *Central Eur. J. Math.*, 9(4) (2011), 915–921.
- [15] Ballester-Bolinches A, Beidleman J C, Feldman A D, Heineken H, et al. Finite solvable groups in which semi-normalty is a transitive relation. Beitr.Algebra Geom, DOI 10.1007/s13366-012-0099-1
- [16] Ballester-Bolinches A, Beidleman J C, Feldman A D. Some new characterizations of solvable PST-groups. Ricerche mat. DOI 10.1007/s11587-012-0130-8
- [17] Xiaolan Yi, Alexander N. Skiba, On S-propermutable subgroups of finite groups, Bull. Malays. Math. Sci. Soc. (2) 34(2) (2011), (in Press).

- [18] Xiaolan Yi, A. N. Skiba, On some generalizations of permutability and S-permutability, Problems of Physics Mathematics and Techniques, 2013, 2 (15).
- [19] L. A. Shemetkov, Formations of finite groups, Nauka, Moscow, 1978.
- [20] B. Huppert, Endliche Gruppen I. Springer-Verlag, Berlin, Heidelberg, New York, 1967.
- [21] Shirong Li, Zhencai Shen, Jianjun Liu, Xiaochun Liu, The influence of SS-quasinormality of some subgroups on the structure of finite group, J. Algebra, **319** (2008), 4275-4287.
- [22] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, New York, 1992
- [23] Ballester-Bolinches A, Ezquerro L M. Classes of Finite groups. Dordrecht: Springer, 2006
- [24] B.N. Knyagina, V.S. Monakhov, On π'-properties of finite group having a Hall π-subgroup, Siberian. Math. J. (2011), 52 (2), 298-309.
- [25] O.H. Kegel, Produkte nilpotenter Gruppen, Arch. Math., 12 (1961), 90-93.
- [26] L. A. Shemetkov, A. N. Skiba, Formations of Algebraic Systems, Nauka, Moscow, 1989.
- [27] D. Gorenstein, *Finite Groups*, Harper & Row Publishers, New York, Evanston, London, 1968.
- [28] V.S. Monakhov, Product of supersoluble and cyclic or primary groups, Finite Groups, Proc. Gomel Sem., Gomel, 1975–1977 (in Russian), "Nauka i Tekhnika", Minsk, 1978, 50–63.
- [29] A. N. Skiba, On the F-hypercentre and the intersection of all F-maximal subgroups of a finite group, Journal of Pure and Applied Algebra (2011), doi:10.1016/j.jpaa.2011.10.006.
- [30] M. Weinstein, Between Nilpotent and Solvable, Polygonal Publishing House, 1982.
- [31] B. Huppert, N. Blackburn, *Finite Groups III*, Springer-Verlag, Berlin, New-York, 1982.
- [32] W. Guo, A.N. Skiba, On FΦ*-hypercentral subgroups of finite groups, J. Algebra, 372 (2012), 285-292.
- [33] H. Su, Semi-normal subgroups of finite groups, Math Mag., 8 (1988), 7–9.
- [34] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
- [35] W. Guo W, K P Shum, A. N. Skiba, X-semipermutable subgroups of finite groups, J Algebra, 315 (2007), 31–41
- [36] W. Guo, Finite groups with semi-normal Sylow subgroups, Acta Math Sinica, English Series, 24 (2008), 1751–1758
- [37] V. V. Podgornaja, Seminormal subgroups and supersolubility of finite groups, Vesci NAN Belarus, Ser Phis Math Sciences, 4 (2000), 22–25.