УДК 541.128.24 : 547.319.1

Е. С. РУДАКОВ, В. М. МАСТИХИН, Р. И. РУДАКОВА, С. Г. ПОПОВ

ХИМИЧЕСКАЯ ПОЛЯРИЗАЦИЯ ЯДЕР В РЕАКЦИИ ОКИСЛЕНИЯ ДИМЕТИЛСУЛЬФИДА АЗОТНОЙ КИСЛОТОЙ

(Представлено академиком Г. К. Боресковым 26 Х 1971)

В статье (¹) сообщалось о наблюдении необычного для растворов явления фронтальной реакции: в хорошо перемешанном растворе $HNO_3 - H_2O - диоксан - (CH_3)_2S$ окисление $(CH_3)_2S + HNO_3 \rightarrow (CH_3)_2SO + HNO_2$ начинается на границе с паровой фазой и далее фронтом распространяется на весь объем. Неожиданным было и то, что процесс сопровождается химической поляризацией ядер водорода (х.п.я.), положительной в $(CH_3)_2SO$ и отрицательной в $(CH_3)_2S$. Эффекты х.п.я. (²⁻⁶) для реакций этого класса ранее не отмечались. Для дальнейшего изучения х.п.я. и механизма реакции необходимо было найти условия перехода фронтального процесса в объемный.

Удалось выяснить, что при одном составе раствора реакция может идти двумя путями в зависимости от времени индукции объемной реакции (τ_{o6}) и процессов зарождения фронта (τ_{dp}). При $\tau_{dp} < \tau_{o6}$ реализуется фронтальный процесс, при $\tau_{dp} > \tau_{o6}$ — объемный. Так, смешение раствора с затравкой (NO₂ или раствор после опыта (¹)) ведет к объемной реакции, локальное введение затравки — к фронтальной. Реакция без затравки часто начинается в парах (иногда на шлифе или дефектах стекла), образующиеся окислы азота затем атакуют поверхность раствора, вызывая фронт. Роль затравки состоит в подавлении (окислении) примесных ингибиторов, в частности — метилмеркаптана. Реакция ингибируется также H_2O_2 . Эти вопросы требуют специального исследования. Существенно, однако, что х.п.я. в объемной реакции сохраняется, и форма сигналов почти не зависит от образца сульфида и использования затравки. Рассмотрим кинетику объемной реакции.

Х.п.я. На рис. 1а показаны изменения сигналов я.м.р. (частота 100 Мгц) в ходе реакции: Х для $(CH_3)_2S$ и У для $(CH_3)_2SO$. Линия $X(\tau)$ имеет два экстремума, а линия $Y(\tau)$ — один, который обычно на $\Delta \tau = 2-3$ сек. опережает минимум Х. Примем, что Х и У состоят из двух вкладов

$$X = x + X^*, \quad Y = y + Y^*,$$
 (1)

где x и $y = x_0 - x$ — сигналы неполяризованных молекул (CH₃)₂S и (CH₃)₂SO, X^* и Y^* — сигналы поляризации. Наблюдаемая кинетика свидетельствует о том, что $X^* < 0$, $Y^* > 0$ и что поляризация затухает во времени быстрее, чем реакция. При снижении скорости реакции выход х.п.я. уменьшается (кривые a - a). Интересен случай «скрытой отрицательной х.п.я.» (кривая a), когда формально эмиссии уже нет, но х.п.я. сохраняется. В табл. 1 приведены усредненные по нескольким опытам данные: время τ_{max} первого экстремума X, сдвиг $\Delta \tau$ и значения X^*_{max} и $Y^*_{n.ax}$ в первом экстремуме, найденные при условии, что в этот момент $x = {2 \atop 3} x_0$. Измерения проведены при комнатной температуре. Объемная доля затравки (раствор состава 1 после реакции) во всех опытах — $\delta = 0.07$. Растворитель — диоксан.

10* 147

С ростом x₀ или [HNO₃]₀ выход х.п.я. растет, а т_{max} — снижается, что передается для исследованной области уравнениями

 $-X_{\max}^* \simeq c_1 x_0^2$, $-X_{\max}^* \simeq c_2 [HNO_3]_0^4$, $\tau_{\max} \simeq c_3 [HNO_3]_0^{-4}$, (2) где c_i — константы. Зависимость τ_{\max} от δ имеет вид $\tau_{\max} \simeq c_4 - c_5 \lg \delta$, тиничный для автокатализа. Добавки (CH₃)₂SO до 1 *M* снижают скорость

реакции, но не влияют на выход х.п.я.

Кинетика реакции. Вследствие х.п.я. прямое измерение *х* в ходе реакции по спектрам я.м.р. невозможно. Простой путь подавления х.п.я. — разбавление реагирую-

χ

χ

г

30 ce n

30 cen

30 cex

Pnc. 2

Рис. 1. Кинетические кривые х.п.я. в зависимости от концентрации HNO₃. Составы растворов (см. табл. 1): X для (CH₃)₂S, Y для (CH₃)₂SO₂. $a - \mathcal{N}_{2}$ 6, $b - \mathcal{N}_{2}$ 9, $s - \mathcal{N}_{2}$ 10, $s - \mathcal{N}_{2}$ 11; $\delta = 0,07$. τ_{0} – начало реакции (смешение с затравкой) Рис. 2. Кинетические кривые $X^{*}(\tau)$ (1), $Y^{*}(\tau)$ (2) и $x(\tau)$ (3). Состав раствора – \mathcal{N}_{2} 1, $\delta = 0,02$ (см. табл. 1)

щего раствора диоксаном в 2 раза; при этом, согласно (2), выход х.п.я. снижается в 2⁶ раз. Реализация этой идеи позволила изучить кинетику реакции в тех же условиях, в которых изучена кинетика х.п.я. (рис. 2). Кривые $x = x(\tau)$ имеют характерную для автокатализа форму; точка перегиба (x_{nep}) совпадает по времени с Y^*_{max} , а значение $x_{nep} \simeq 2/3x_0$. Спектрофотометрически изучена кинетика (рис. 3) образования в реакции проме-

Таблица 1

Состав	Концентрации, М			τ_{\max} ,	Δτ,	$-x_{\max}^*$	Y^*_{max}
	HNO_3	H ₂ O	$(CH_3)_2$ \Im (x_0)	сек		М	
Влияние концептрации (CH ₃) ₂ S							
1 2 3 4 5	$3,0 \\ 3,0 \\ 3,0 \\ 3,0 \\ 3,0 \\ 3,0 \\ 3,0 $	$ \begin{array}{ c c c c } 4,2 \\ 4,$	$ \begin{array}{c c} 1,0\\ 0,8\\ 0,6\\ 0,4\\ 0,3 \end{array} $	$\begin{array}{c c}14,6\\16,1\\19,4\\46,6\\60,8\end{array}$	$2,3 \\ 2,7 \\ 3,0 \\ 3,4 \\ -$	5,34,42,61,20,6	4,1 2,7 1,5 0,6 0,3
Влияние концентрации НNO3							
1 6 7 8 9 10	3,0 2,7 2,4 2,1 1,95 1,8	$\begin{array}{c c} 4,2\\3,8\\3,3\\2,9\\2,7\\2,5\\2,5\\2,5\\2,5\\2,5\\2,5\\2,5\\2,5\\2,5\\2,5$	$ \begin{array}{c} 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\ 1,0\\$	$\begin{array}{c c}14,6\\20,9\\31,8\\52,0\\76,0\\86,0\end{array}$	2,3 2,5 3 -1 -8 -12	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 4,1\\2,4\\1,2\\0,3\\0,2\\0,1\end{array} $
11	1,ō	[2,1	1,0	Видимой х. п. я. нет			

148

жуточного «коричневого комплекса» предполагаемого состава $(CH_3)_2 S \cdots N_2 O_4$ (¹). Максимумы кривых $D - \tau$ примерно совпадают по времени с максимумами х.п.я., а $D_{max} \simeq -0.2 X^*_{max}$. Разогрев в объемпой реакции $10-30^\circ$ в зависимости от состава раствора. Время подъема температуры близко к τ_{max} .

Кинетика реакции и поляризации Y*. Скорость реакции -dx / dt, определенная из кривых x - t (рис. 2), пропорциональна Y* в

широкой области составов исходного раствора и глубины превращения (рис. 4). Это указывает, что продукт реакции (СН₃)₂SO получается только по одному маршруту, па стадии

Рис. 3. Кинетика накопления — «выгорания» коричиевого комплекса при [HNO₃] = 3 мол/л в зависимости от x_0 (*M*): $a \rightarrow 0.7$, $b \rightarrow 0.6$, $e \rightarrow 0.5$, $e \rightarrow 0.4$. *D* — оптическая плотность при 510 мµ, кювета 1 см

Рис. 4. Пропорциональность между скоростью реакции $-dx / d\tau$ (м/мол·сек⁻¹) и поляризацией — $Y^*(M)$. Сверху — прямоугольник ошибок измерений. Составы растворов (см. табл. 1): $a - N_2$ 1, $\delta = 0.02$; $\delta - N_2$ 1, $\delta = 0.2$; $e - N_2$ 7, $\delta - 0.2$

деполяризации (CH₃)₂SO^{*} → (CH₃)₂SO. Кинетическое уравнение этой стадии

$$\frac{dy}{d\tau} = -\frac{dx}{d\tau} = \frac{1}{E_y T_{1y}} Y^*$$
(3)

(где T_{1y} — время спин-решеточной релаксации (СН₃)₂SO, E_y — коэффициент усиления для поляризации Y^*) не зависит от других стадий процесса и перекидывает мост между кинетикой реакции и х.п.я. Прямым методом (⁷) были измерены времена релаксации (СН₃)₂S и (СН₃)₂SO в дноксане: $T_{1x} = 3.1$ и $T_y = 2.2$ сек⁻¹. Сравнивая (3) с опытными данными (рис. 4), находим $E_y = 35$.

Х. п. я. в реакциях высших сульфидов. Чтобы выяснить поведение мультиплетов в поляризациях Х*и Y*, были изучены в сходных условиях реакции HNO₃ с диэтил-, ди-*н*-пропил- и ди-*н*-бутилсульфидами. В каждом случае обнаружены эффекты х.п.я.— положительный для R₂SO и отрицательный для R₂S, причем поляризованы только протопы *a*-CH₂групп. Характер поляризации — иптегральный. Согласно современным представлениям (⁴⁻⁶) это означает преобладание поляризации за счет разности *g*-факторов компонентов радикальной пары. Кроме того, эти факты указывают, что один из неспаренных электронов радикальной пары локализован на атоме серы и делокализацией спина на β-протопы по цепи алкильной группы можно пренебречь.

О механизме реакции. HNO_3 прямо не окисляет сульфид. Непосредственный окислитель и катализатор N_2O_4 (возможно, также NO_2^- или NO_2) образуется при автокаталитическом распаде HNO_3 в смеси с сульфидом и гибнет за счет гидролиза реакций с ингибиторами и сульфидом. Повидимому, в ходе процесса возникает сверхравновесная концентрация N₂O₄.

Рассмотрим теперь превращения сульфида. Согласно (⁴⁻⁶), х.п.я. происходит вследствие синглет-триплетных переходов в радикальных парах под влиянием зеемановского или сверхтонкого взаимодействий в компонентах пары. Следствие такого механизма — противоположные по знаку коэффициенты усиления для продуктов реакций рекомбинации (диспропорционирования) и переноса, что действительно имеет место в нашем случае. На основании этих представлений и рассмотренных выше результатов можно считать вероятным механизм (вместо N₂O₄ может выступать NO₂⁺)

Перенос электрона в комплексе $R_2S \cdots N_2O_4$ ведет к радикальной паре, которая имеет определенную вероятность диспропорционировать с образованием R_2SO или подвергнуться распалу. Катион-радикал с донором электропа D дает поляризованный сульфид R_2S^* . Ранее скрыто-радикальный механизм предполагали в реакциях окисления аминов, фосфинов и сульфидов перекисными соединениями (⁸). Схема (4) отображает суммарный процесс регенерации и накопления N_2O_4 .

Кипетика реакций превращения сульфидов и N₂O₄, ведущая к х.п.я., мощпому автокатализу, а в специальных условиях — к появлению фронта, требует дополеительных исследований. Однако уже сейчас ясно, что эффекты х.п.я. (в структурном и кинетическом аспектах) позволяют получить уникальную информацию о механизме этого необычно сложного процесса.

Институт катализа Сибирского отделения Академии наук СССР Новосибирск Поступило 20 X 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Е. С. Рудаков, Л. Н. Арзамаскова и пр., ДАН, 200, 1144 (1971). ² I. Bargon, H. Fischer, H. Johnson, Zs. Naturforsch., 22a, 1551 (1967). ³ I. Bargon, H. Fischer, Zs. Naturforsch., 22a, 1556 (1967). ⁴ G. L. Closs, A. D. Trifunac, J. Am. Chem. Soc., 92, 2183 (1970). ⁵ H. Fisher, Zc. Naturforsch, 25a, 1957 (1970). ⁶ A. Л. Бучаченко, Г. М. Жидомиров, Усп. хим., 40, в. 2, 1729 (1971). ⁷ В. Андерсон, Сборп. ЯМР и ЭПР спектроскопия, ИЛ, 1964, гл. 8. ⁸ Д. Г. Победимский, Усп. хим., 15, в. 2, 254 (1971).

150