УДК [612.113+612.114]:612.127.2

ФИЗИОЛОГИЯ

м. А. ХАНИН, И. Б. БУХАРОВ

О ЗАВИСИМОСТИ К.П.Д. МЫШЦ ОТ КОНЦЕНТРАЦИИ КИСЛОРОДА в венозной крови

(Представлено академиком В. В. Париным 1 VI 1971)

Энергетически оптимальная концентрация кислорода в венозной крови C_v при физической нагрузке, определяющейся потреблением кислорода $\dot{V}_{\mathrm{o}_{\mathrm{o}}}$ должна удовлетворять условию:

$$\partial W / \partial C_v = 0,$$

$$W = W_H + W_L + W_M (1 - \eta_M),$$
(1)

где $W_{\rm H},~W_{\rm L},~W_{\rm M}$ — мощности, потребляемые соответственно сердцем, легкими и мышцами; $\eta_M(C_v, V_{O_2})$ — к.п.д. мышц.

Мощность эритропоэза не учитывается, так как при кратковременных нагрузках концентрация эритроцитов практически не изменяется. Член $W_{\scriptscriptstyle M}(1-\eta_{\scriptscriptstyle M})$ учитывает энергетические потери в мышце. Зависимость величин $W_{\scriptscriptstyle H},\,W_{\scriptscriptstyle L}$ и $W_{\scriptscriptstyle M}$ от $C_{\scriptscriptstyle v}$ и $V_{\scriptscriptstyle O_2}$ определяется выраже-

ниями:

$$W_{H} = \frac{a\dot{V}_{O_{2}}}{(C_{a} - C_{v})\left(1 - \beta \frac{\dot{V}_{O_{2}}}{C_{a} - C_{v}}\right)},$$

$$W_{L} = a_{2}\dot{V}_{A}^{2} + a_{3}\dot{V}_{A}^{3},$$

$$\dot{V}_{A} = \frac{\dot{V}_{O_{2}}}{0,21 - \frac{1}{3}\frac{P_{a} + 2b_{0}}{P_{B}} - \frac{2}{3}\frac{b_{1}C_{v}}{P_{B}} - \frac{1}{D_{L}(\dot{V}_{O_{2}})}\frac{\dot{V}_{O_{2}}}{P_{B}}},$$

$$W_{M} = H(\dot{V}_{O_{2}} - \dot{V}_{O_{2}}^{0}),$$

$$(2)$$

где C_a — концентрация кислорода в артериальной крови, P_a — парциальное давление кислорода в артериальной крови, $V_{0_2}{}^0$ — потребление кислорода в состоянии покоя, \dot{V}_A — альвеолярная вентиляция легких; $D_L(\dot{V}_{\text{O}_2})$ — диффузионная проводимость легких, P_B — барометрическое давление, H=5 кал на 1 мл O_2 , $\alpha=14.5$ кал/л, $\beta=3\cdot 10^{-2}$ мин/л, $a_2=3.9\cdot 10^{-2}$ кал ·мин / π^2 , $a_3 = 4.3 \cdot 10^{-4}$ кал·мин² / π^3 , $b_0 = 5$ мм рт. ст., $b_1 = 215 \frac{\text{мм рт. ст.}}{\text{мл O}_2/\text{мл}}$.

В первом уравнении системы (2) множитель $1-\beta \; rac{\dot{V}_{{
m O}_2}}{C_a-C_v}\;$ учитывает зависимость к.п.д. сердца от расхода крови Q, полученную путем обработки данных (1). Величины C_a и P_a в соответствии с известными экспериментальными данными принимались постоянными (2).

Зависимость мощности, потребляемой легкими, от альвеолярной вентиляции получена путем пересчета данных (3), в которых определена зависимость W_L от полной легочной вентиляции V_L :

$$\dot{V}_L = \dot{V}_A + fV_d,$$

где f — частота дыхания, V_d — мертвый объем легких.

Связь альвеолярной вентиляции легких с другими параметрами установлена путем решения следующей системы уравнений:

$$P_A - P_c = rac{1}{D_L(\dot{V}_{\mathrm{O_2}})} \dot{V}_{\mathrm{O_2}}$$
 — уравнение диффузии;
$$rac{1}{P_B} (P_I - P_A) \dot{V}_A - \dot{V}_{\mathrm{O_2}}$$
 — уравнение баланса кислорода; $P_c = P_v + {}^1/_3 (P_a - P_v)$ — формула Баркрофта;

 $P_v = b_0 + b_1 C_v$ — линейная аппроксимация кривой равновесного насыщения гемоглобина кислородом, где P_I — парциальное давление кислорода во вдыхаемом воздухе; $P_{\rm A}$ — парциальное давление кислорода в альвеолярном воздухе; $P_{\rm c}$ — среднее парциальное давление кислорода в капиллярных легких; P_v — парциальное давление кислорода в венозной крови.

Уравнение (1) с использованием выражений (2) позволяет установить зависимость энергетически оптимальной величины C_v от V_{0_2} , если известна функция $\eta_{\rm M}(C_{\rm v}, \dot{V}_{\rm O_2})$. Ввиду отсутствия достаточно надежных экспериментальных данных об этой зависимости. нами была решена обратная задача. С помощью данных о зависимости $C_v = \varphi(V_{\mathcal{O}_v})$ (4) устанавливается зависимость к.п.д. мышц от C_v и V_{O_2} . При этом используются следующие дополнительные условия и допущения:

1. К.п.д. мышц $\eta_{\scriptscriptstyle M}$ представлен в виде произведения двух функций:

$$\eta_{M}(C_{v}, \dot{V}_{O_{2}}) = \eta_{1}(\dot{V}_{O_{2}})\eta_{2}(C_{v}).$$

2. Используется эмпирическая зависимость к.п.д. мышц от \dot{V}_{O_2} в условиях оптимального регулирования C_v :

$$\eta_M = \omega \, (\dot{V}_{O_2}) = \frac{\gamma_1 \dot{V}_{O_2}}{1 + \gamma_2 \dot{V}_{O_2}},$$

где $\gamma_1 = 1.6 \cdot 10^{-3}$ мин. на 1 мл O_2 , $\gamma_2 = 6.4 \cdot 10^{-3}$ мин. на 1 мл $O_2(5)$.

3. Используется эмпирическая зависимость эффективной диффузионной проводимости легких от \dot{V}_{O_s} :

$$D_L(\dot{V}_{O_2}) = \frac{\delta_1 \dot{V}_{O_2}}{1 + \delta_2 \dot{V}_{O_2}}$$
,

тде $\delta_1=1,5\cdot 10^{-2}1$ / мм рт. ст., $\delta_2=8,6\cdot 10^{-5}$ мин. на 1 мл. O_2 (4, 5). 4. Эмпирическая зависимость $C_{v \text{ opt}}$ от V_{O_2} аппроксимируется формулой

$$C_{v \text{ opt}} = \varphi(\dot{V}_{O_2}) = \frac{1 + \varepsilon_1 \dot{V}_{O_2}}{\varepsilon_2 \dot{V}_{O_2}},$$

где $\varepsilon_1 = 8.5 \cdot 10^{-4}$ мин. на 1 мл O_2 , $\varepsilon_2 = 2.1 \cdot 10^{-2} \frac{\text{мл·мин}}{(\text{мп O}_2)^2}$ (4).

Таким образом, уравнение (1) принимает ви

$$\frac{\partial \ln \eta_2}{\partial C_{\mathbf{v}}}\Big|_{C_{\mathbf{v}} = \varphi \ (\dot{V}_{\Omega_2})} = \frac{1}{H \ (\dot{V}_{\Omega_2} - \dot{V}_{\Omega_2}^0) \eta_M} \cdot \frac{\partial \ (\dot{W}_H + \dot{W}_L)}{\partial C_{\mathbf{v}}}\Big|_{C_{\mathbf{v}} = \varphi \ (\dot{V}_{\Omega_2})}. \tag{3}$$

Решение уравнения (3) дает

$$\frac{\eta_{2}(C_{v_{1}})}{\eta_{2}(C_{v_{2}})} = \exp\left\{ \int_{C_{p_{0}}}^{C_{v_{1}}} \frac{\Psi(C_{v}) dC_{v}}{H(\dot{V}_{O_{2}} - \dot{V}_{O_{2}}^{0}) \eta_{M}} \Big|_{V_{O_{2}} = \chi(C_{v})} \right\}, \tag{4}$$

тде

$$\begin{split} \Psi\left(C_{\boldsymbol{v}}\right) &= \left.\frac{\partial \left(W_{H} + W_{L}\right)}{\partial C_{\boldsymbol{v}}}\right|_{\dot{V}_{O_{2}} = \varkappa\left(C_{v}\right)} = \frac{a\dot{V}_{O_{2}}}{\left(C_{a} - C_{v}\right)^{2} \left(1 - \beta \frac{\dot{V}_{O_{2}}}{C_{a} - C_{v}}\right)^{2}}\right|_{\dot{V}_{O_{2}} = \varkappa\left(C_{v}\right)} + \\ &+ \left(2a_{2}\dot{V}_{A} + 3a_{3}\dot{V}_{A}^{2}\right) \frac{\partial \dot{V}_{A}}{\partial C_{v}}\right|_{\dot{V}_{O_{2}} = \varkappa\left(C_{v}\right)}; \end{split}$$

 $\dot{V}_{\mathrm{O}_{i}} = \chi(C_{v})$ — функция, обратная $\varphi(\dot{V}_{\mathrm{O}_{z}})$.

Решение (4) определяет функцию $\eta_2(C_v)$ с точностью до постоянного множителя. На рис. 1 представлена теоретическая зависимость к.п.д. мышц

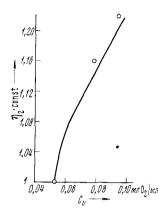


Рис. 1. Зависимость к.п.д. мышц η_2 от концентрации кислорода в венозной крови C_n

от C_v . С помощью полученной функции может быть найдена зависимость к.п.д. мышц от средней концентрации кислорода в мышечной ткани.

Для сравнения полученной теоретической зависимости с экспериментальными данными мы воспользовались результатами работы Асмуссена и Чиоди (6). Полученные ими данные позволили нам вычислить относительное изменение к.п.д. мышц при двух значениях концентрации кислорода в венозной крови: $C_v = 0.079$, $C_v = 0.095$ мл O_2 на 1 мл. Соответствующие точки приведены на рис. 1.

Нам представляется весьма желательным экспериментальное исследование зависимости к.п.д. мышц от C_v в достаточно широком диапазоне изменения C_v .

Следует заметить, что функция $\eta_1(\dot{V}_{\rm O_2})$ определяет истинную зависимость к.п.д. мышц от $\dot{V}_{\rm O_2}$, тогда как обычно используемая зависимость

 $\eta_M(\vec{V}_{0_2})$ косвенно учитывает также зависимость к.п.д. от C_v в условиях оптимального регулирования артерно-венозной разности.

Авторы с глубокой благодарностью отмечают большой интерес, проявленный акад. В. В. Париным к этой работе, и плодотворное обсуждение им ее результатов.

Поступило 1 VI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

 1 H. J. Levine, N. A. Britman, J. Clin. Invest., 43, 1383 (1964). 2 G. Matell, Acta physiol. scand., 58, Suppl. 206, 5 (1963). 3 G. Milic-Emili, J. M. Petit, J. Appl. Physiol., 15, 359 (1960). 4 L. G. C. E. Pugh, J. Appl. Physiol., 19, 441 (1964). 5 L. G. C. E. Pugh, M. B. Gill et al., J. Appl. Physiol., 19, 431 (1964). 6 E. Asmussen, H. Chiodi, Am. J. Physiol., 132, 426 (1941).