

ON LAWS OF LATTICES OF PARTIALLY SATURATED FORMATIONS

Leonid A. Shemetkov*

Department of Mathematics, Francisk Skorina Gomel State University

Gomel 246019, Belarus

shemetkov@gsu.by

Alexander N. Skiba[†]

Department of Mathematics, Francisk Skorina Gomel State University,

Gomel 246019, Belarus

alexander.skiba49@gmail.com

Nikolay N. Vorob'ev

Department of Mathematics, Masherov Vitebsk State University,

Vitebsk 210038, Belarus

vornic2001@yahoo.com

Communicated by K. P. Shum Received October 20, 2008 Revised November 21, 2008

It is proved that every law of the lattice of all τ -closed formations of finite groups is fulfilled in the lattice of all τ -closed n-multiply ω -saturated formations of finite groups, for every subgroup functor τ and every natural number n.

Keywords: Finite group; subgroup functor; formation of groups; n-multiply ω -saturated formation; law of lattice; modular lattice.

AMS Subject Classification: 20D10, 20F17

1. Introduction

All groups considered are finite.

In the book [4] and in the recent books [9], [10] it was demonstrated that constructions and results of lattice theory are very useful tools to study groups and

^{*}Research of the second author is partially supported by Belarussian Republic Foundation of Fundamental Researches (BRFFI, grant F06-017)

[†]Research of the first author is partially supported by Belarussian Republic Foundation of Fundamental Researches (BRFFI, grant F06-017)

group classes. In particular, it was proved that the lattice of all saturated formations is modular [4]. Further this result was developed in different ways. In the book [1] modularity of the lattice of all τ -closed n-multiply saturated formations was established, for every subgroup functor τ ; in [5] it was shown by A. Ballester-Bolinches and L.A. Shemetkov that the lattice of all p-saturated formations is modular; A. N. Skiba and L. A. Shemetkov proved [2], [6] modularity of the lattice of all n-multiply ω -saturated formations and the lattice of all n-multiply ω -composition formations, respectively; I.P. Shabalina proved [7] modularity of the lattice of all τ -closed n-multiply ω -saturated formations.

Since the lattice of all formations is modular [3], all the above-mentioned results are special cases of our first theorem.

Theorem 1. Let n > 0. Then every law of the lattice of all τ -closed formations is fulfilled in the lattice of all τ -closed n-multiply ω -saturated formations.

The second theorem give a further information about the lattice of all τ -closed n-multiply ω -saturated formations.

Theorem 2. Let n > 0. If ω is an infinite set, then the law system of the lattice of all τ -closed formations coincides with the law system of the lattice of all τ -closed n-multiply ω -saturated formations.

All unexplained notations and terminologies are standard. The reader is referred to [8], [9] and [10] if necessary.

2. Proof of Theorem 1

Recall that a group class closed under taking homomorphic images and finite subdirect products is called a formation.

In each group G we select a system of subgroups $\tau(G)$. It is said that τ is a subgroup functor if the following conditions hold:

- 1) $G \in \tau(G)$ for every group G;
- 2) for every epimorphism $\varphi: A \to B$ and all groups $H \in \tau(A)$ and $T \in \tau(B)$ we have $H^{\varphi} \in \tau(B)$ and $T^{\varphi^{-1}} \in \tau(A)$.

A formation \mathfrak{F} is called τ -closed if $\tau(G) \subseteq \mathfrak{F}$ for every group G of \mathfrak{F} (see [1]).

Let ω be a nonempty set of primes, $\omega' = \mathbb{P} \setminus \omega$. $\pi(G)$ denotes the set of all prime divisors of the order of a group G. Recall that a group G is called an ωd -group if $\omega \cap \pi(G) \neq \emptyset$. The symbols \mathfrak{G} , \mathfrak{N}_p and $\mathfrak{G}_{p'}$ denote, respectively, the class of all groups, the class of all p-groups and the class of all p'-groups; $\mathfrak{G}_{\omega d}$ denotes the class of all groups in which every composition factor is an ωd -group. For every group class $(1) \subseteq \mathfrak{F}$, by $G_{\mathfrak{F}}$ we denote the product of all normal \mathfrak{F} -subgroups of group G. In particular, we write

$$G_{\omega d} = G_{\mathfrak{G}_{\omega d}}, F_p(G) = G_{\mathfrak{G}_{p'}\mathfrak{N}_p}.$$

Functions of the form

$$f:\omega \bigcup \{\omega'\} \to \{\text{formations of groups}\}\$$

are called ω -local satellites (see [2]). For every ω -local satellite f, we define the class

$$LF_{\omega}(f) = (G \mid G/G_{\omega d} \in f(\omega') \text{ and } G/F_p(G) \in f(p) \text{ for all } p \in \omega \cap \pi(G)).$$

If \mathfrak{F} is a formation such that $\mathfrak{F} = LF_{\omega}(f)$ for an ω -local satellite f, then the formation \mathfrak{F} is said to be ω -saturated, and f is said to be an ω -local satellite of \mathfrak{F} .

Every formation is 0-multiply ω -saturated, by definition. For n > 0, a formation is called n-multiply ω -saturated if $\mathfrak{F} = LF_{\omega}(f)$ and all nonempty values of f are (n-1)-multiply ω -saturated formations (see [2]). If a formation \mathfrak{F} is n-multiply ω -saturated for all natural n, then \mathfrak{F} is called totally ω -saturated.

By $l_{\omega_n}^{\tau}$ we denote the set of all τ -closed n-multiply ω -saturated formations. With respect to inclusion, an arbitrary nonempty subset $\{\mathcal{H}_i \mid i \in \Lambda\}$ of $l_{\omega_n}^{\tau}$ has a greatest lower bound, namely $\cap_{i \in \Lambda} \mathcal{H}_i$; besides, $\{\mathcal{H}_i \mid i \in \Lambda\}$ has a least upper bound, the intersections of all elements in $l_{\omega_n}^{\tau}$ containing $\cup_{i \in \Lambda} \mathcal{H}_i$. Thus, $l_{\omega_n}^{\tau}$ is a complete lattice. In particular, $l_{\omega_0}^{\tau}$ is the lattice of all τ -closed formations.

A group class closed under taking homomorphic images is called a semiformation [4]. The symbol $l_{\omega_n}^{\tau}$ form \mathfrak{X} denotes the intersection of all τ -closed n-multiply ω -saturated formations containing a collection \mathfrak{X} of groups.

By [2], Lemma 5, if $\mathfrak{F} = l_{\omega_n}^{\tau}$ form \mathfrak{X} , then $\mathfrak{F} = LF_{\omega}(f)$ where

$$f(a) = \begin{cases} l_{\omega_{n-1}}^{\tau} \text{form } (G/F_p(G) \mid G \in \mathfrak{X}), & \text{if } a = p \in \omega \cap \pi(\mathfrak{X}), \\ \varnothing, & \text{if } a = p \in \omega \setminus \pi(\mathfrak{X}), \\ l_{\omega_{n-1}}^{\tau} \text{form } (G/G_{\omega d} \mid G \in \mathfrak{X}), & \text{if } a = \omega'. \end{cases}$$

The satellite f is called the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of \mathfrak{F} (see [2]). First we prove the following lemmas.

Lemma 1. Let A be a monolithic group, R a non-abelian socle of A, \mathfrak{M} a semiformation and $A \in l_{\omega_n}^{\tau}$ form \mathfrak{M} . Then $A \in \mathfrak{M}$.

Proof. We proceed by induction on n. Let n = 0. Then

$$A \in l_{\omega_0}^{\tau}$$
 form $\mathfrak{M} =$ form \mathfrak{M} .

Let $A \notin \mathfrak{M}$. Then, by [1], Corollary 1.2.26, there exists a group H in form \mathfrak{M} and normal subgroups $N, M, N_1, \ldots, N_t, M_1, \ldots, M_t$ $(t \geq 2)$ of H such that the following statements hold:

- 1) $A \simeq H/N$ and $M/N = \operatorname{Soc}(H/N)$;
- 2) H/N_i is a monolithic \mathfrak{M} -group and M_i/N_i is the socle of H/N_i which is H-isomorphic to M/N.

Clearly $C_H(M/N) = N$. Hence $N_i \subseteq N$. Therefore $A \simeq H/N \in \mathfrak{M}$, a contradiction. This completes the proof of the lemma for n = 0.

Let n > 0, and let the lemma holds for n - 1. Suppose f is the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of $\mathfrak{F} = l_{\omega_n}^{\tau}$ form \mathfrak{M} . If $\omega \cap \pi(R) = \emptyset$, then $A_{\omega d} = 1$, and so, by [2], Lemma 5, we have

$$A \simeq A/A_{\omega d} \in f(\omega') \subseteq l_{\omega_{n-1}}^{\tau}$$
 form \mathfrak{M} .

Consequently, $A \in \mathfrak{M}$.

Let $\omega \cap \pi(R) \neq \emptyset$ and $p \in \omega \cap \pi(R)$. Then $F_p(A) = 1$, and by [2], Lemma 5, we have

$$A \simeq A/F_p(A) \in f(p) \subseteq l_{\omega_n}^{\tau}$$
 form \mathfrak{M} .

Hence $A \in \mathfrak{M}$, and the lemma is proved.

Lemma 2 [1], Lemma 4.1.3., Let $N_1 \times ... \times N_t = \operatorname{Soc}(G)$ where t > 1, and G a group with $O_p(G) = 1$. Let M_i be the largest normal subgroup in G containing $N_1 \times ... \times N_{i-1} \times N_{i+1} \times ... \times N_t$ but not containing N_i (i = 1, ..., t). Then

- 1) for every $i \in \{1, ..., t\}$, $O_p(G/M_i) = 1$, G/M_i is monolithic and its socle $N_i M_i/M_i$ is G-isomorphic to N_i ;
 - $2) M_1 \cap \ldots \cap M_t = 1.$

Lemma 3. Let \mathfrak{M} be a semiformation and $A \in l_{\omega_n}^{\tau}$ form \mathfrak{M} . Then the following statements hold:

- 1) if $O_p(A)=1$ and $p\in\omega$, then $A\in l^{\tau}_{\omega_n}$ form \mathfrak{M}_1 where $\mathfrak{M}_1=\{G/O_p(G)\mid G\in\mathfrak{M}\}$:
 - 2) if $A_{\omega d} = 1$, then $A \in l^{\tau}_{\omega_n}$ form \mathfrak{M}_2 where $\mathfrak{M}_2 = \{G/G_{\omega d} \mid G \in \mathfrak{M}\}.$

Proof. If $A \in \mathfrak{M}$, the result is clear. Hence we may suppose that $A \notin \mathfrak{M}$. Suppose that A is a monolithic group and R is the socle of A. Let n=0. Then $A \in l^{\tau}_{\omega_0}$ form $\mathfrak{M} =$ form \mathfrak{M} . Hence, by [1], Corollary 1.2.26, there exists a group H in form \mathfrak{M} , normal subgroups $N, M, N_1, \ldots, N_t, M_1, \ldots, M_t (t \geq 2)$ in H such that the following statements hold: 1) $H/N \simeq A$, $M/N = \operatorname{Soc}(H/N)$; 2) $N_1 \cap \ldots \cap N_t = 1$; 3) H/N_i is a monolithic \mathfrak{M} -group and M_i/N_i is the socle of H/N_i which is H-isomorphic to M/N. Since $O_p(A) = 1$, we have

$$A \in \mathrm{QR}_0\{H/N_1,\ldots,H/N_t\} \subseteq \mathrm{form} \ \mathfrak{M}_1.$$

Let n > 0. Suppose that $O_p(A) = 1$. If R is nonabelian, then Lemma 1 implies $A \in \mathfrak{M}$. This contradicts the choice of A. Hence R is a q-group where $q \in \omega \setminus \{p\}$. Consequently, $F_q(A) = O_q(A)$. Since for every group G we have

$$G/G_{\omega d} \simeq (G/O_p(G))/(G_{\omega d}/O_p(G))$$

$$= (G/O_p(G))/(G/O_p(G))_{\omega d},$$

by [2], Lemma 5, it follows that $f(\omega') = h(\omega')$ where f and h are minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellites of $\mathfrak{F} = l_{\omega_n}^{\tau}$ form \mathfrak{M} and $\mathfrak{H} = l_{\omega_n}^{\tau}$ form \mathfrak{M}_1 respectively. If $q \notin \omega$, then $A_{\omega d} = 1$ and so

$$A \simeq A/A_{\omega d} \in f(\omega') = h(\omega') \subseteq \mathfrak{H}.$$

Let $q \in \omega$. Since for every group G we have

$$G/F_q(G) \simeq (G/O_p(G))/(F_q(G)/O_p(G))$$

$$= (G/O_p(G))/F_q(G/O_p(G)),$$

by [2], Lemma 5, it follows that f(q) = h(q). Hence $A/O_q(A) \in \mathfrak{H}$ and

$$A/F_r(A) \simeq (A/O_q(A))/(F_r(A)/O_q(A))$$

$$= (A/O_q(A))/F_r(A/O_q(A)) \in h(r),$$

for all $r \in \omega \cap \pi(A)$. We deduce, that $A \in \mathfrak{H}$. Analogously $A \in l_{\omega_n}^{\tau}$ form \mathfrak{M}_2 where $\mathfrak{M}_2 = \{G/G_{\omega d} \mid G \in \mathfrak{M}\}.$

Now suppose that $\operatorname{Soc}(A) = N_1 \times \ldots \times N_t$ where t > 1. Let M_i be the largest normal subgroup of A containing $N_1 \times \ldots \times N_{i-1} \times N_{i+1} \times \ldots \times N_t$ but not containing $N_i, i = 1, \ldots, t$. Using Lemma 2, we have $A \in \operatorname{R}_0(A/M_1, \ldots, A/M_t)$ where A/M_i is monolithic, $N_i M_i / M_i$ is the socle of A/M_i and $O_p(A/M_i) = 1$. Clearly $A/M_i \in l_{\omega_n}^{\tau}$ form \mathfrak{M} . As we proved above, $A/M_i \in l_{\omega_n}^{\tau}$ form \mathfrak{M}_1 . Consequently, $A \in \mathfrak{H}_n$, as claimed.

Let $\{\mathfrak{F}_i \mid i \in I\}$ be an arbitrary collection of τ -closed n-multiply ω -saturated formations. We denote

$$\vee_{\omega_n}^{\tau}(\mathfrak{F}_i \mid i \in I) = l_{\omega_n}^{\tau} \text{form } (\bigcup_{i \in I} \mathfrak{F}_i).$$

In particular,

$$\mathfrak{M} \vee_{\omega_n}^{\tau} \mathfrak{H} = l_{\omega_n}^{\tau} \text{form } (\mathfrak{M} \bigcup \mathfrak{H}).$$

A function $f:\omega\bigcup\{\omega'\}\to\{\text{formations of groups}\}\$ is called $l_{\omega_n}^{\tau}$ -valued if all its values belong to the lattice $l_{\omega_n}^{\tau}$.

Let $\{f_i \mid i \in I\}$ be a collection of $l_{\omega_n}^{\tau}$ -valued functions of the form

$$f_i: \omega \bigcup \{\omega'\} \to \{\text{formations of groups}\}.$$

In this case, by $\vee_{\omega_n}^{\tau}(f_i \mid i \in I)$ we denote a function f such that $f(\omega') = l_{\omega_n}^{\tau}$ form $(\bigcup_{i \in I} f_i(\omega'))$. In particular,

$$(f_1 \vee_{\omega_n}^{\tau} f_2)(\omega') = l_{\omega_n}^{\tau} \text{ form } (f_1(\omega')) \bigcup f_2(\omega'))$$

and for $p \in \omega$ we have $f(p) = l_{\omega_n}^{\tau}$ form $(\bigcup_{i \in I} f_i(p))$. In particular,

$$(f_1 \vee_{\omega_n}^{\tau} f_2)(p) = l_{\omega_n}^{\tau} \text{ form } (f_1(p) \bigcup f_2(p))$$

if at least one of the formations $f_i(p) \neq \emptyset$. If $f_i(p) = \emptyset$ for all $i \in I$, then we suppose that $f(p) = \emptyset$.

Lemma 4. Let f_i be the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of a τ -closed n-multiply ω -saturated formation \mathfrak{F}_i where $i \in I$. Then $\vee_{\omega_{n-1}}^{\tau}(f_i \mid i \in I)$ is the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of $\mathfrak{F} = \vee_{\omega_n}^{\tau}(\mathfrak{F}_i \mid i \in I)$.

Proof. Observe that

$$\pi(\bigcup_{i\in I}\mathfrak{F}_i)=\bigcup_{i\in I}\pi(\mathfrak{F}_i)=\pi(\mathfrak{F}).$$

Let $f = \bigvee_{\omega_{n-1}}^{\tau} (f_i \mid i \in I)$, and let h be the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of \mathfrak{F} . Let $p \in \omega \setminus \pi(\mathfrak{F})$. In this case, for every $i \in I$, we have $f_i(p) = \emptyset$. Hence $f(p) = \emptyset$. Clearly $h(p) = \emptyset$.

Let $p \in \omega \cap \pi(\mathfrak{F})$. In this case, there is $i \in I$ such that $f_i(p) \neq \emptyset$. Using [2], Lemma 5, we have

$$h(p) = l_{\omega_{n-1}}^{\tau} \text{form } (G/F_p(G) \mid G \in \bigcup_{i \in I} \mathfrak{F}_i) =$$

$$l_{\omega_{n-1}}^{\tau}$$
 form $(\bigcup_{i \in I} l_{\omega_{n-1}}^{\tau}$ form $(G/F_p(G) \mid G \in \mathfrak{F}_i)) =$

$$l_{\omega_{n-1}}^{\tau} \text{form } (\bigcup_{i \in I} f_i(p)) = (\vee_{\omega_{n-1}}^{\tau} (f_i \mid i \in I))(p).$$

Moreover, by [2], Lemma 5, we have

$$h(\omega') = l_{\omega_{n-1}}^{\tau} \text{form } (G/G_{\omega d} \mid G \in \bigcup_{i \in I} \mathfrak{F}_i) =$$

$$l_{\omega_{n-1}}^{\tau}$$
 form $(\bigcup_{i \in I} l_{\omega_{n-1}}^{\tau}$ form $(G/G_{\omega d} \mid G \in \mathfrak{F}_i)) =$

$$l_{\omega_{n-1}}^{\tau} \text{form } (\bigcup_{i \in I} f_i(\omega')) = (\vee_{\omega_{n-1}}^{\tau} (f_i \mid i \in I))(\omega').$$

Thus $\vee_{\omega_{n-1}}^{\tau}(f_i \mid i \in I)$ is the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of $\mathfrak{F} = \vee_{\omega_n}^{\tau}(\mathfrak{F}_i \mid i \in I)$, and the lemma is proved.

If $\mathfrak{F} = LF_{\omega}(f)$ and $f(a) \subseteq \mathfrak{F}$ for all $a \in \omega \bigcup \{\omega'\}$, then f is called an inner satellite of \mathfrak{F} .

Lemma 5. If $\{\mathfrak{F}_i = LF_{\omega}(f_i) \mid i \in I\}$ is a set of τ -closed ω -saturated formations \mathfrak{F}_i where f_i is an inner $l^{\tau}_{\omega_{n-1}}$ -valued satellite of \mathfrak{F}_i , then

$$\vee_{\omega_n}^{\tau}(\mathfrak{F}_i \mid i \in I) = LF_{\omega}(\vee_{\omega_{n-1}}^{\tau}(f_i \mid i \in I)).$$

Proof. Let $\{\mathfrak{F}_i \mid i \in I\}$ be a set of τ -closed n-multiply ω -saturated formations and f_i be an inner $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of \mathfrak{F}_i . Let $\mathfrak{F} = \vee_{\omega_n}^{\tau}(\mathfrak{F}_i \mid i \in I)$, $\mathfrak{M} = LF_{\omega}(\vee_{\omega_{n-1}}^{\tau}(f_i \mid i \in I))$ and h_i be the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of \mathfrak{F}_i . Then by Lemma 4 we have that $h = \vee_{\omega_{n-1}}^{\tau}(h_i \mid i \in I)$ is the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of τ -closed formation \mathfrak{F} . Clearly $h \leq f = \vee_{\omega_{n-1}}^{\tau}(f_i \mid i \in I)$. Hence $\mathfrak{F} \subseteq \mathfrak{M}$. Suppose that the converse inclusion is false. Let G be a group of minimal order in $\mathfrak{M} \setminus \mathfrak{F}$. Let R be the socle of G. Then $R = G^{\mathfrak{F}}$. Let $p \in \pi(R) \cap \omega$.

Suppose that R is nonabelian. Then $F_p(G) = 1$. Therefore

$$G \simeq G/F_p(G) \in (\vee_{\omega_{n-1}}^{\tau}(f_i \mid i \in I))(p) = l_{\omega_{n-1}}^{\tau} \text{form } (\bigcup_{i \in I} f_i(p)).$$

Hence, by Lemma 1, Lemma 5, we have

$$G \in \bigcup_{i \in I} f_i(p) \subseteq \bigcup_{i \in I} \mathfrak{F}_i \subseteq \mathfrak{F},$$

a contradiction. Consequently, R is a p-group. Then $O_p(G) = F_p(G)$. But $G \in \mathfrak{M} = LF_{\omega}(\vee_{\omega_{n-1}}^{\tau}(f_i \mid i \in I))$. Hence $G/O_p(G) \in l_{\omega_{n-1}}^{\tau}$ form $(\bigcup_{i \in I} f_i(p))$. Since $O_p(G/O_p(G)) = 1$, Lemma 3 and [2], imply

$$G/O_p(G) \in l^{\tau}_{\omega_{n-1}} \text{form } (A/O_p(A) \mid A \in \bigcup_{i \in I} f_i(p))$$

$$= l^{\tau}_{\omega_{n-1}} \text{form } (\bigcup_{i \in I} l^{\tau}_{\omega_{n-1}} \text{form } (A/O_p(A) \mid A \in f_i(p)))$$

$$= l^{\tau}_{\omega_{n-1}} \text{form } (\bigcup_{i \in I} h_i(p)) = (\vee^{\tau}_{\omega_{n-1}} (h_i \mid i \in I))(p) = h(p).$$

Hence, by [2], Lemma 4, we have $G \in \mathfrak{F}$, a contradiction. Consequently, $\omega \cap \pi(R) = \emptyset$. Therefore $G_{\omega d} = 1$. Applying Lemma 3 and [2], Lemma 5, we have

$$G \simeq G/G_{\omega d} \in l_{\omega_{n-1}}^{\tau} \text{ form } (A/A_{\omega d} \mid A \in \bigcup_{i \in I} f_i(\omega'))$$

$$= l_{\omega_{n-1}}^{\tau} \text{ form } (\bigcup_{i \in I} l_{\omega_{n-1}}^{\tau} \text{ form } (A/A_{\omega d} \mid A \in f_i(\omega')))$$

$$= l_{\omega_{n-1}}^{\tau} \text{ form } (\bigcup_{i \in I} h_i(\omega')) = (\vee_{\omega_{n-1}}^{\tau} (h_i \mid i \in I))(\omega') = h(\omega').$$

Consequently, $\mathfrak{F} = \mathfrak{M}$. This proves the lemma.

A subgroup functor τ is said to be *closed* [1] if $H \in \tau(G)$ always implies $\tau(H) \subseteq \tau(G)$. If τ is a subgroup functor, we denote by $\overline{\tau}$ the intersection of all closed functors τ_i such that $\tau \leq \tau_i$.

For every collection of groups \mathfrak{X} , by $S_{\tau}\mathfrak{X}$ we denote the set of all groups H such that $H \in \tau(G)$ for a group $G \in \mathfrak{X}$ (see [1]).

Lemma 6 [1] . Let \mathfrak{X} be a collection of groups. Then

$$\tau$$
 form $\mathfrak{X} = QR_0S_{\overline{\tau}}(\mathfrak{X})$.

The intersection of all τ -closed semiformations containing \mathfrak{X} is called the τ -closed semiformation generated by \mathfrak{X} [1].

Lemma 7 [1] . Let \mathfrak{F} be a τ -closed semiformation generated by \mathfrak{X} . Then

$$\mathfrak{F} = QS_{\overline{\tau}}\mathfrak{X}.$$

Recall that a set of formations θ is called a complete lattice of formations (see [1]) if an intersection of every set of formations in θ belongs to θ and there is a formation \mathfrak{F} in θ such that $\mathfrak{M} \subseteq \mathfrak{F}$ for every formation \mathfrak{M} of θ . A formation in θ is called a θ -formation. By θ form G we denote the intersection of all θ -formations containing a group G.

If θ is a complete lattice of formations and $\mathfrak{M}, \mathfrak{H} \in \theta$, then $\mathfrak{M} \cap \mathfrak{H}$ is the greatest lower bound for $\{\mathfrak{M}, \mathfrak{H}\}$ in θ , and $\mathfrak{M} \vee_{\theta} \mathfrak{H}$ is the least upper bound for $\{\mathfrak{M}, \mathfrak{H}\}$ in θ .

A complete lattice of formations θ is called \mathfrak{X} -separated if for every term $\xi(x_1,\ldots,x_m)$ of the signature $\{\bigcap, \vee_{\theta}\}$, every θ -formations $\mathfrak{F}_1,\ldots,\mathfrak{F}_m$ and every group $A \in \mathfrak{X} \bigcap \xi(\mathfrak{F}_1,\ldots,\mathfrak{F}_m)$ there exist \mathfrak{X} -groups $A_1 \in \mathfrak{F}_1,\ldots,A_m \in \mathfrak{F}_m$ such that $A \in \xi(\theta \text{form } A_1,\ldots,\theta \text{form } A_m)$.

Lemma 8. The lattice $l_{\omega_n}^{\tau}$ is \mathfrak{G} -separated.

Proof. Let $\xi(x_1,\ldots,x_m)$ be a term of the signature $\{\bigcap,\vee_{\omega_n}^{\tau}\}$, $\mathfrak{F}_1,\ldots,\mathfrak{F}_m$ be formations in $l_{\omega_n}^{\tau}$ and $A\in \xi(\mathfrak{F}_1,\ldots,\mathfrak{F}_m)$. We proceed by induction on the number r of occurrences of the symbols in $\{\bigcap,\vee_{\omega_n}^{\tau}\}$ into the term ξ . We show that there exist groups $A_i\in\mathfrak{F}_i$ $(i=1,\ldots,m)$ such that $A\in \xi(\mathfrak{M}_1,\ldots,\mathfrak{M}_m)$ where $\mathfrak{M}_i=l_{\omega_n}^{\tau}$ form A_i . It is obvious for r=0. We prove the assertion for r=1 by induction on n. Let n=0, i.e., either $A\in\mathfrak{F}_1\cap\mathfrak{F}_2$ or

$$A \in \mathfrak{F}_1 \vee_{\omega_0}^{\tau} \mathfrak{F}_2 = l_{\omega_0}^{\tau} \text{form } (\mathfrak{F}_1 \bigcup \mathfrak{F}_2) = \text{form } (\mathfrak{F}_1 \bigcup \mathfrak{F}_2).$$

In the first case $A \in \text{form } A \cap \text{form } A$. In the second case, by Lemma 6, we have $A \simeq H/N$ where

$$H \in \mathcal{R}_0(\mathfrak{F}_1 \bigcup \mathfrak{F}_2).$$

Clearly $H^{\mathfrak{F}_1} \cap H^{\mathfrak{F}_2} = 1$. Hence

$$A \in \text{form } (H/H^{\mathfrak{F}_1}, H/H^{\mathfrak{F}_2}) = \text{form } (H/H^{\mathfrak{F}_1}) \vee$$

form
$$(H/H^{\mathfrak{F}_2}) \subseteq \mathfrak{F}_1 \vee_{\omega_0}^{\tau} \mathfrak{F}_2$$
.

Let n > 0, $\{p_1, \ldots, p_t\} = \pi(A)$ and $A \in \mathfrak{F}_1 \vee_{\omega_n}^{\tau} \mathfrak{F}_2$. Then using [2], Lemma 5, and Lemma 4 we have

$$A/F_{p_i}(A) \in f_1(p_i) \vee_{\omega_{n-1}}^{\tau} f_2(p_i), \quad A/A_{\omega d} \in f_1(\omega') \vee_{\omega_{n-1}}^{\tau} f_2(\omega'),$$

where f_j is the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of \mathfrak{F}_j where j=1,2. By induction there exist groups $A_{i_1} \in f_1(p_i), A_{i_2} \in f_2(p_i), T_1 \in f_1(\omega'), T_2 \in f_2(\omega')$ such that

$$A/F_{p_i}(A) \in (l_{\omega_{n-1}}^{\tau} \text{form } A_{i_1}) \vee_{\omega_{n-1}}^{\tau} (l_{\omega_{n-1}}^{\tau} \text{form } A_{i_2}),$$

$$A/A_{\omega d} \in (l_{\omega_{n-1}}^{\tau} \text{ form } T_1) \vee_{\omega_{n-1}}^{\tau} (l_{\omega_{n-1}}^{\tau} \text{ form } T_2).$$

Clearly,

$$(l^\tau_{\omega_{n-1}}\text{form }A_{i_1})\vee^\tau_{\omega_{n-1}}(l^\tau_{\omega_{n-1}}\text{form }A_{i_2})=l^\tau_{\omega_{n-1}}\text{form }(A_{i_1},A_{i_2}).$$

$$(l_{\omega_{n-1}}^{\tau}\text{form }T_1)\vee_{\omega_{n-1}}^{\tau}(l_{\omega_{n-1}}^{\tau}\text{form }T_2)=l_{\omega_{n-1}}^{\tau}\text{form }(T_1,T_2).$$

Let \mathfrak{M}_1 be a semiformation generated by A_{i_1} , and \mathfrak{M}_2 be a semiformation generated by A_{i_2} . By Lemma 7 we have $\mathfrak{M}_1 = (A_1, \ldots, A_t)$ and $\mathfrak{M}_2 = (B_1, \ldots, B_r)$ where $A_1, \ldots, A_t \in \mathrm{QS}_{\overline{\tau}}(A_{i_1})$ and $B_1, \ldots, B_r \in \mathrm{QS}_{\overline{\tau}}(A_{i_2})$. Clearly $\mathfrak{M}_1 \bigcup \mathfrak{M}_2$ is a τ -closed semiformation and

$$A/F_{p_i}(A) \in l_{\omega_{n-1}}^{\tau}$$
 form $(A_{i_1}, A_{i_2}) = l_{\omega_{n-1}}^{\tau}$ form $(\mathfrak{M}_1 \bigcup \mathfrak{M}_2)$.

Hence, by Lemma 3, we may suppose that

$$|O_{p_i}(A_k)| = 1 = |O_{p_i}(B_l)|$$

for all k = 1, ..., t and l = 1, ..., r. Applying Lemma 3 and analogous argument we may suppose that $(T_i)_{\omega d} = 1, i = 1, 2$.

Let $D_{i_1} = A_1 \times ... \times A_t$ and $D_{i_2} = B_1 \times ... \times B_r$. Then

$$|O_{p_i}(D_{i_1})| = 1 = |O_{p_i}(D_{i_2})|.$$

Besides,

$$A/F_{p_i}(A) \in l_{\omega_{n-1}}^{\tau}$$
 form $(D_{i_1}, D_{i_2}) \subseteq l_{\omega_{n-1}}^{\tau}$ form (A_{i_1}, A_{i_2}) .

Let Z_i be a group of order p_i , $B_{i_1} = Z_i \wr D_{i_1}$ and $B_{i_2} = Z_i \wr D_{i_2}$. Using [2] we have $B_{i_1} \in \mathfrak{F}_1$, $B_{i_2} \in \mathfrak{F}_2$. Hence

$$A_1 = B_{1_1} \times B_{2_1} \times \ldots \times B_{t_1} \times T_1 \in \mathfrak{F}_1, \quad A_2 = B_{1_2} \times B_{2_2} \times \ldots \times B_{t_2} \times T_2 \in \mathfrak{F}_2.$$

We show that

$$A \in \mathfrak{F} = (l_{\omega_n}^{\tau} \text{ form } A_1) \vee_{\omega_n}^{\tau} (l_{\omega_n}^{\tau} \text{ form } A_2).$$

It suffices to prove $A/A_{\omega d} \in f(\omega')$ and $A/F_{p_i}(A) \in f(p_i)$ where f is the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of \mathfrak{F} . Clearly $B_{i_1} \in \mathfrak{F}$. Hence $B_{i_1}/F_{p_i}(B_{i_1}) \in f(p_i)$. Since $O_{p_i}(D_{i_1}) = 1$, we have $B_{i_1}/F_{p_i}(B_{i_1}) \simeq D_{i_1}$, i.e. $D_{i_1} \in f(p_i)$. Analogously we deduce that $D_{i_2} \in f(p_i)$. Consequently,

$$A/F_{p_i}(A) \in l_{\omega_{n-1}}^{\tau} \text{form } (D_{i_1}, D_{i_2}) \subseteq f(p_i).$$

Clearly $T_1, T_2 \in \mathfrak{F}$. Hence, by [2], Lemma 5, we have

$$T_i \simeq T_i/(T_i)_{\omega d} \in f(\omega') = l_{\omega_{n-1}}^{\tau} \text{form } (G/G_{\omega d} \mid G \in \mathfrak{F}) = f(\omega').$$

Consequently, $l_{\omega_{n-1}}^{\tau}$ form $(T_1, T_2) \subseteq f(\omega')$. Therefore $A/A_{\omega d} \in f(\omega')$. This completes the proof of the lemma for r = 1.

Let a term ξ have r > 1 occurrences of the symbols in $\{\bigcap, \vee_{\omega_n}^{\tau}\}$. We suppose proving by induction that the lemma holds for terms with less number of occurrences. Assume that ξ is of the form

$$\xi_1(x_{i_1},\ldots,x_{i_a})\triangle\xi_2(x_{j_1},\ldots,x_{j_b}),$$

where $\triangle \in \{\bigcap, \vee_{\omega_n}^{\tau}\}$ and

$${x_{i_1}, \ldots, x_{i_a}} \bigcup {x_{j_1}, \ldots, x_{j_b}} = {x_1, \ldots, x_m}.$$

By \mathfrak{H}_1 we denote the formation $\xi_1(\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_a})$, and by \mathfrak{H}_2 the formation $\xi_2(\mathfrak{F}_{j_1},\ldots,\mathfrak{F}_{j_b})$. Then, as it was proved above, there are groups $A_1 \in \mathfrak{H}_1$ and $A_2 \in \mathfrak{H}_2$ such that $A \in l^{\tau}_{\omega_n}$ form $A_1 \triangle l^{\tau}_{\omega_n}$ form A_2 . On the other hand, since the number of operations in the term ξ_1 is less than r, it follows by induction that there exist groups $B_1 \in \mathfrak{F}_{i_1},\ldots,B_a \in \mathfrak{F}_{i_a}$ such that $A_1 \in \xi_1(l^{\tau}_{\omega_n}$ form $B_1,\ldots,l^{\tau}_{\omega_n}$ form B_a). Analogously there exist groups $C_1 \in \mathfrak{F}_{j_1},\ldots,C_b \in \mathfrak{F}_{j_b}$ such that $A_2 \in \xi_2(l^{\tau}_{\omega_n}$ form $C_1,\ldots,l^{\tau}_{\omega_n}$ form C_b).

Let $x_{i_{t+1}}, \ldots, x_{i_a} \in \{x_{j_1}, \ldots, x_{j_b}\}$ and let $\{x_{i_1}, \ldots, x_{i_t}\} \cap \{x_{j_1}, \ldots, x_{j_b}\} = \emptyset$. Assume that

$$D_{i_k} = \begin{cases} B_k, & \text{for } k < t+1, \\ B_k \times C_q, & \text{where } x_{i_k} = x_{j_q}, \\ & \text{for some } q \in \{1, \dots, b\} \text{ provided that } k \ge t+1. \end{cases}$$

Let $D_{j_k} = C_k$ if $x_{j_k} \notin \{x_{i_{t+1}}, \dots, x_{i_a}\}$. By \mathfrak{M}_p we denote the formation $l_{\omega_n}^{\tau}$ form D_{i_p} where $p = 1, \dots, a$, and by \mathfrak{X}_c the formation $l_{\omega_n}^{\tau}$ form D_{j_c} where $c = 1, \dots, b$. Thus

$$A_1 \in \xi_1(l_{\omega_n}^{\tau} \text{ form } B_1, \dots, l_{\omega_n}^{\tau} \text{ form } B_a) \subseteq$$

$$\subseteq \xi_1(l_{\omega_n}^{\tau} \text{ form } D_{i_1}, \dots, l_{\omega_n}^{\tau} \text{ form } D_{i_a}) = \xi_1(\mathfrak{M}_1, \dots, \mathfrak{M}_a),$$

$$A_2 \in \xi_2(l_{\omega_n}^{\tau} \text{ form } C_1, \dots, l_{\omega_n}^{\tau} \text{ form } C_b) \subseteq$$

$$\subseteq \xi_2(l_{\omega_n}^{\tau} \text{ form } D_{j_1}, \dots, l_{\omega_n}^{\tau} \text{ form } D_{j_b}) = \xi_2(\mathfrak{X}_1, \dots, \mathfrak{X}_b).$$

Consequently, there exist formations $\mathfrak{K}_1, \ldots, \mathfrak{K}_m$ such that

$$A \in \xi_1(\mathfrak{K}_{i_1}, \dots, \mathfrak{K}_{i_a}) \triangle \xi_2(\mathfrak{K}_{j_1}, \dots, \mathfrak{K}_{j_b}) = \xi(\mathfrak{K}_1, \dots, \mathfrak{K}_m)$$

where $\mathfrak{K}_i = l_{\omega_n}^{\tau}$ form K_i for $K_i \in \mathfrak{F}_i$. This proves the claim.

For every term ξ of the signature $\{\bigcap, \vee_{\omega_n}^{\tau}\}$ we denote by $\overline{\xi}$ a term of the signature $\{\bigcap, \vee_{\omega_{n-1}}^{\tau}\}$ obtained from ξ by replacing of every symbol $\vee_{\omega_n}^{\tau}$ by the symbol $\vee_{\omega_{n-1}}^{\tau}$.

Lemma 9. Let $\xi(x_1,\ldots,x_m)$ be a term of the signature $\{\bigcap,\vee_{\omega_n}^{\tau}\}$ and f_i be an inner $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of a formation \mathfrak{F}_i where $i=1,\ldots,m$. Then

$$\xi(\mathfrak{F}_1,\ldots,\mathfrak{F}_m)=LF_{\omega}(\overline{\xi}(f_1,\ldots,f_m)).$$

Proof. We proceed by induction on the number r of occurrences of the symbols in $\{\bigcap, \vee_{\omega_n}^{\tau}\}$ into ξ . Let

$$\xi(x_1,\ldots,x_m) = \xi_1(x_{i_1},\ldots,x_{i_a}) \triangle \xi_2(x_{j_1},\ldots,x_{j_b})$$

where $\triangle \in \{\bigcap, \vee_{\omega_n}^{\tau}\},\$

$$\{x_{i_1},\ldots,x_{i_a}\}\ | \{x_{j_1},\ldots,x_{j_b}\} = \{x_1,\ldots,x_m\}.$$

Assume that the lemma holds for the terms ξ_1 and ξ_2 . Then

$$\xi_1(\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_a})=LF_{\omega}(\overline{\xi}_1(f_{i_1},\ldots,f_{i_a})),$$

$$\xi_2(\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_b})=LF_{\omega}(\overline{\xi}_2(f_{i_1},\ldots,f_{i_b})).$$

It is clear that $\overline{\xi}_1(f_{i_1},\ldots,f_{i_a})$ and $\overline{\xi}_2(f_{j_1},\ldots,f_{j_b})$ are inner $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellites of the formations $\xi_1(\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_a})$ and $\xi_2(\mathfrak{F}_{j_1},\ldots,\mathfrak{F}_{j_b})$, respectively. Hence

by induction we have

$$\xi(\mathfrak{F}_1,\ldots,\mathfrak{F}_m) = \xi_1(\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_a}) \triangle \xi_2(\mathfrak{F}_{j_1},\ldots,\mathfrak{F}_{j_b})$$
$$= LF_{\omega}(\overline{\xi}_1(f_{i_1},\ldots,f_{i_a}) \overline{\triangle} \,\overline{\xi}_2(f_{j_1},\ldots,f_{j_b})) = LF_{\omega}(\overline{\xi}(f_1,\ldots,f_m))$$

where $\overline{\Delta} = \bigcap$ if $\Delta = \bigcap$ and $\overline{\Delta} = \vee_{\omega_{n-1}}^{\tau}$ if $\Delta = \vee_{\omega_n}^{\tau}$, as claimed.

Lemma 10. Let θ be a \mathfrak{X} -separated complete lattice of formations and η be a sublattice of θ such that η contains all one-generated θ -subformations of the form θ form A, where $A \in \mathfrak{X}$, of every formation $\mathfrak{F} \in \eta$. Suppose that a law $\xi_1 = \xi_2$ of the signature $\{\bigcap, \vee_{\theta}\}$ is true for all one-generated θ -formations belonging to η . Then the law $\xi_1 = \xi_2$ is true for all θ -formations belonging to η .

Proof. Let x_{i_1}, \ldots, x_{i_a} be arguments occurring in the term ξ_1 , let x_{j_1}, \ldots, x_{j_b} be arguments occurring in the term ξ_2 , and let $\mathfrak{F}_{i_1}, \ldots, \mathfrak{F}_{i_a}; \mathfrak{F}_{j_1}, \ldots, \mathfrak{F}_{j_b} \in \eta$. We show that

$$\mathfrak{F} = \xi_1(\mathfrak{F}_{i_1}, \dots, \mathfrak{F}_{i_a}) \subseteq \xi_2(\mathfrak{F}_{j_1}, \dots, \mathfrak{F}_{j_b}) = \mathfrak{M}.$$

Without loss of generality we may suppose that

$$x_{j_1}, \ldots, x_{j_t} \in \{x_{i_1}, \ldots, x_{i_a}\}$$

and

$$\{x_{j_{t+1}},\ldots,x_{j_b}\}\bigcap\{x_{i_1},\ldots,x_{i_a}\}=\varnothing.$$

Let $A \in \mathfrak{F}$. Then, by assumption there exist \mathfrak{X} -groups A_{i_1}, \ldots, A_{i_a} such that $A_{i_k} \in \mathfrak{F}_{i_k}$ (where $k = 1, \ldots, a$) and

$$A \in \xi_1(\theta \text{ form } A_{i_1}, \dots, \theta \text{ form } A_{i_a}).$$

Let

$$\mathfrak{H}_{i_k} = \theta \text{form } A_{i_k},$$

and let

$$\mathfrak{H}_{j_k} = \begin{cases} \mathfrak{H}_{i_c}, & \text{where } x_{j_k} = x_{i_c}, \\ & \text{for some } c \in \{1, \dots, a\} \text{ for all } k \in \{1, \dots, t\}, \\ \theta \text{form } B_{j_k}, & \text{for some group } B_{j_k} \in \mathfrak{F}_{j_k} \text{ provided that } k > t. \end{cases}$$

By assumption

$$\xi_1(\mathfrak{H}_{i_1},\ldots,\mathfrak{H}_{i_a})=\xi_2(\mathfrak{H}_{j_1},\ldots,\mathfrak{H}_{j_b}).$$

But $\xi_2(\mathfrak{H}_{j_1},\ldots,\mathfrak{H}_{j_b})\subseteq\mathfrak{M}$. Therefore $A\in\mathfrak{M}$. Thus $\mathfrak{F}\subseteq\mathfrak{M}$. The inverse inclusion can be proved analogously. Hence $\mathfrak{F}=\mathfrak{M}$, which completes the proof of this lemma.

Proof of Theorem 1. Fix a law

$$\xi_1(x_{i_1}, \dots, x_{i_a}) = \xi_2(x_{j_1}, \dots, x_{j_b}) \tag{1}$$

of the signature $\{\bigcap, \vee_{\omega_n}^{\tau}\}$. Let

$$\overline{\xi}_1(x_{i_1}, \dots, x_{i_n}) = \overline{\xi}_2(x_{j_1}, \dots, x_{j_n})$$
 (2)

be the same law of the signature $\{\bigcap, \vee_{\omega_{n-1}}^{\tau}\}$.

Suppose that law (2) is true in the lattice $l_{\omega_{n-1}}^{\tau}$. Let

$$\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_a};\mathfrak{F}_{j_1},\ldots,\mathfrak{F}_{j_b}$$

be τ -closed n-multiply ω -saturated formations. We show that

$$\xi_1(\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_a})=\xi_2(\mathfrak{F}_{j_1},\ldots,\mathfrak{F}_{j_b}).$$

Let f_{ic} be the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of \mathfrak{F}_{ic} (where $c=1,\ldots,a$) and f_{jd} be the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of \mathfrak{F}_{jd} (where $d=1,\ldots,b$). Then using Lemma 9 we have

$$\xi_1(\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_a})=LF_{\omega}(\overline{\xi}_1(f_{i_1},\ldots,f_{i_a})),$$

$$\xi_2(\mathfrak{F}_{j_1},\ldots,\mathfrak{F}_{j_b})=LF_{\omega}(\overline{\xi}_2(f_{j_1},\ldots,f_{j_b})).$$

Besides, formations

$$f_{i_1}(\omega'),\ldots,f_{i_a}(\omega');f_{j_1}(\omega'),\ldots,f_{j_b}(\omega')$$

and formations

$$f_{i_1}(p), \ldots, f_{i_n}(p); f_{j_1}(p), \ldots, f_{j_b}(p)$$

belong to the lattice $l_{\omega_{n-1}}^{\tau}$ for every prime $p \in \omega$. Then by assumption

$$\overline{\xi}_1(f_{i_1},\ldots,f_{i_a})(p) = \overline{\xi}_1(f_{i_1}(p),\ldots,f_{i_a}(p)) =$$

$$\overline{\xi}_2(f_{j_1}(p),\ldots,f_{j_b}(p)) = \overline{\xi}_2(f_{j_1},\ldots,f_{j_b})(p)$$

and

$$\overline{\xi}_1(f_{i_1},\ldots,f_{i_a})(\omega')=\overline{\xi}_1(f_{i_1}(\omega'),\ldots,f_{i_a}(\omega'))=$$

$$\overline{\xi}_2(f_{j_1}(\omega'),\ldots,f_{j_b}(\omega')) = \overline{\xi}_2(f_{j_1},\ldots,f_{j_b})(\omega').$$

Consequently,

$$\xi_1(\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_a})=\xi_2(\mathfrak{F}_{j_1},\ldots,\mathfrak{F}_{j_b}).$$

Thus law (1) is true in the lattice $l_{\omega_n}^{\tau}$, and the result is proved.

Now we give some corollaries of Theorem 1.

Corollary 1.1 (A.N. Skiba [3]). The lattice of all saturated formations is modular.

Corollary 1.2 (L.A. Shemetkov and A.N. Skiba [4]). The lattice of all n-multiply saturated formations is modular.

Corollary 1.3 (Ballester-Bolinches and L. A. Shemetkov [5]). The lattice of all p-saturated formations is modular.

Corollary 1.4 (A. N. Skiba [1]). The lattice of all τ -closed n-multiply saturated formations is modular.

Corollary 1.5 (A. N. Skiba and L. A. Shemetkov [2]). The lattice of all n-multiply ω -saturated formations is modular.

Corollary 1.6 (I. P. Shabalina [7]). The lattice of all τ -closed n-multiply ω -saturated formations is modular.

3. Proof of Theorem 2

Proof. Fix a law

$$\xi_1(x_{i_1}, \dots, x_{i_a}) = \xi_2(x_{j_1}, \dots, x_{j_b})$$
(3)

of the signature $\{\bigcap, \vee_{\omega_n}^{\tau}\}$. Let

$$\overline{\xi}_1(x_{i_1}, \dots, x_{i_n}) = \overline{\xi}_2(x_{j_1}, \dots, x_{j_n}) \tag{4}$$

be the same law of the signature $\{\bigcap, \vee_{\omega_{n-1}}^{\tau}\}$.

Suppose that law (3) is true in the lattice $l_{\omega_n}^{\tau}$. We show that law (4) is true in the lattice $l_{\omega_{n-1}}^{\tau}$. By Lemma 10, it suffices to prove that if

$$\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_a};\mathfrak{F}_{j_1},\ldots,\mathfrak{F}_{j_b}$$

are every one-generated τ -closed (n-1)-multiply ω -saturated formations, then

$$\overline{\xi}_1(\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_a})=\overline{\xi}_2(\mathfrak{F}_{j_1},\ldots,\mathfrak{F}_{j_b}).$$

Let

$$\mathfrak{F}_{i_1} = l_{\omega_{n-1}}^{\tau}$$
 form $A_{i_1}, \dots, \mathfrak{F}_{i_a} = l_{\omega_{n-1}}^{\tau}$ form A_{i_a} ;

$$\mathfrak{F}_{j_1} = l_{\omega_{n-1}}^{\tau}$$
 form $A_{j_1}, \ldots, \mathfrak{F}_{j_b} = l_{\omega_{n-1}}^{\tau}$ form A_{j_b} .

We choose prime $p \in \omega$ such that $p \notin \pi(A_{i_1}, \ldots, A_{i_a}, A_{j_1}, \ldots, A_{j_b})$. Let

$$B_{i_1} = P \wr A_{i_1}, \ldots, B_{i_a} = P \wr A_{i_a};$$

$$B_{j_1} = P \wr A_{j_1}, \ldots, B_{j_b} = P \wr A_{j_b},$$

where P is a group of order p. Since formations

$$\mathfrak{M}_{i_1} = l_{\omega_n}^{\tau}$$
 form $B_{i_1}, \dots, \mathfrak{M}_{i_a} = l_{\omega_n}^{\tau}$ form B_{i_a} ;

$$\mathfrak{M}_{j_1} = l_{\omega_n}^{\tau} \text{form } B_{j_1}, \dots, \mathfrak{M}_{j_b} = l_{\omega_n}^{\tau} \text{form } B_{j_b}$$

belong to $l_{\omega_n}^{\tau}$, we have $\mathfrak{F} = \mathfrak{M}$ where

$$\mathfrak{F} = \xi_1(\mathfrak{M}_{i_1}, \dots, \mathfrak{M}_{i_a})$$
 and $\mathfrak{M} = \xi_2(\mathfrak{M}_{j_1}, \dots, \mathfrak{M}_{j_b}).$

Let f_{i_c} be the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of \mathfrak{M}_{i_c} (where $c=1,\ldots,a$) and f_{j_d} be the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellite of \mathfrak{M}_{j_d} (where $d=1,\ldots,b$). By Lemma 9 we have

$$\xi_1(\mathfrak{M}_{i_1},\ldots,\mathfrak{M}_{i_a})=LF_{\omega}(\overline{\xi}_1(f_{i_1},\ldots,f_{i_a})),$$

$$\xi_2(\mathfrak{M}_{j_1},\ldots,\mathfrak{M}_{j_b}) = LF_{\omega}(\overline{\xi}_2(f_{j_1},\ldots,f_{j_b})).$$

Let f and m be the minimal $l_{\omega_{n-1}}^{\tau}$ -valued ω -local satellites of \mathfrak{F} and \mathfrak{M} , respectively. Then using [2], Lemma 5 (3) and Lemma 4, we have

$$f(p) = \overline{\xi}_1(f_{i_1}, \dots, f_{i_n})(p) = \overline{\xi}_1(f_{i_1}(p), \dots, f_{i_n}(p))$$

and

$$m(p) = \overline{\xi}_2(f_{j_1}, \dots, f_{j_b})(p) = \overline{\xi}_2(f_{j_1}(p), \dots, f_{j_b}(p)).$$

Hence

$$\overline{\xi}_1(f_{i_1}(p),\ldots,f_{i_a}(p)) = \overline{\xi}_2(f_{j_1}(p),\ldots,f_{j_b}(p)).$$

Since $O_p(A_{i_c})=1$, by [2], Lemma 5 (3), we have $f_{i_c}(p)=\mathfrak{F}_{i_c}$ where $c=1,\ldots,a$. Analogously $f_{j_d}(p)=\mathfrak{F}_{j_d}$ where $d=1,\ldots,b$.

Consequently,

$$\overline{\xi}_1(\mathfrak{F}_{i_1},\ldots,\mathfrak{F}_{i_a})=\overline{\xi}_2(\mathfrak{F}_{j_1},\ldots,\mathfrak{F}_{j_b}),$$

i.e., law (4) is true in the lattice $l_{\omega_{n-1}}^{\tau}$. Thus every law of $l_{\omega_n}^{\tau}$ is true in $l_{\omega_0}^{\tau}$. Using Theorem 1, we have the result.

If $\omega = \mathbb{P}$, we write l_n^{τ} instead $l_{\omega_n}^{\tau}$. We have the following corollaries.

Corollary 2.1 (A.N. Skiba [1]). Let n and m be nonnegative integers. Then the law systems of lattices l_n^{τ} and l_m^{τ} coincide.

If τ is trivial $(\tau(G) = \{G\})$ for every group G, we have the following result.

Corollary 2.2 (L. A. Shemetkov and A. N. Skiba [4]). Let n and m be nonnegative integers. Then the law systems of lattices l_n and l_m coincide.

Finally, we note that V.G. Safonov proved modularity of the lattice of all totally saturated formations [11] and modularity of the lattice of all τ -closed totally saturated formations [12].

References

- 1. A. N. Skiba, Algebra of Formations, Belaruskaya navuka, Minsk, 1997.
- 2. L. A. Shemetkov, A. N. Skiba, Multiply ω -local formations and Fitting classes of finite groups, Siberian Advances in Mathematics 10 (2) (2000) 112–141.
- 3. A. N. Skiba, On local formations of the length 5, in: Arithmetical and Subgroup Structure of Finite Groups (Works of Gomel Seminar), Nauka i Tekhnika, Minsk, 1986, pp. 135–149.
- L. A. Shemetkov, A. N. Skiba, Formations of algebraic systems, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1989.
- A. Ballester-Bolinches, L. A. Shemetkov On lattices of p-local formations of finite groups, Math. Nachr. 186 (1997) 57–65.
- A. N. Skiba, L. A. Shemetkov, Multiply \(\mathcal{L}\)-composition formations of finite groups, *Ukrainian Math. Journal* 52 (6) (2000) 898–913.
- 7. I. P. Shabalina, On the lattice of τ -closed n-multiply ω -local formations of finite groups, Vesti NAN Belarusi. Ser. Fiz.-Mat. navuk (2003) No. 1, 28–30.
- K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin-New York, 1992.

- 9. Wenbin Guo, *The Theory of Classes of Groups*, Science Press/Kluwer Academic Publishers, Beijing–New York–Dordrecht–Boston–London, 2000.
- A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite groups, Springer, Dordrecht, 2006.
- 11. V. G. Safonov, On modularity of the lattice of totally saturated formations of finite groups *Comm. Algebra* **35** (11) (2007) 3495–3502.
- 12. V. G. Safonov, On modularity of the lattice of τ -closed totally saturated formations of finite groups, *Ukrainian Math. Journal* **58** (6) (2006) 852–858.