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1. Introduction

All groups considered are finite.
In the book [4] and in the recent books [9], [10] it was demonstrated that con-
structions and results of lattice theory are very useful tools to study groups and
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group classes. In particular, it was proved that the lattice of all saturated formations
is modular [4]. Further this result was developed in different ways. In the book [1]
modularity of the lattice of all 7-closed n-multiply saturated formations was estab-
lished, for every subgroup functor 7; in [5] it was shown by A. Ballester-Bolinches
and L.A. Shemetkov that the lattice of all p-saturated formations is modular; A.
N. Skiba and L. A. Shemetkov proved [2], [6] modularity of the lattice of all n-
multiply w-saturated formations and the lattice of all n-multiply £-composition
formations, respectively; I.P. Shabalina proved [7] modularity of the lattice of all
7-closed n-multiply w-saturated formations.

Since the lattice of all formations is modular [3], all the above-mentioned results
are special cases of our first theorem.

Theorem 1. Let n > 0. Then every law of the lattice of all T-closed formations
is fulfilled in the lattice of all T-closed n-multiply w-saturated formations.

The second theorem give a further information about the lattice of all 7-closed
n-multiply w-saturated formations.

Theorem 2. Letn > 0. If w is an infinite set, then the law system of the lattice
of all T-closed formations coincides with the law system of the lattice of all T-closed
n-multiply w-saturated formations.

All unexplained notations and terminologies are standard. The reader is referred
to [8], [9] and [10] if necessary.

2. Proof of Theorem 1

Recall that a group class closed under taking homomorphic images and finite sub-
direct products is called a formation.

In each group G we select a system of subgroups 7(G). It is said that 7 is a
subgroup functor if the following conditions hold:

1) G € 7(G) for every group G;

2) for every epimorphism ¢ : A — B and all groups H € 7(A) and T € 7(B) we
have H¢ € 7(B) and T¢ ' € 1(A).

A formation § is called 7-closed if 7(G) C § for every group G of § (see [1]).

Let w be a nonempty set of primes, w’ = P\ w. 7(G) denotes the set of all prime
divisors of the order of a group G. Recall that a group G is called an wd-group if
wNm(G) # @. The symbols &, N, and &, denote, respectively, the class of all
groups, the class of all p-groups and the class of all p’-groups; &4 denotes the class
of all groups in which every composition factor is an wd-group. For every group
class (1) C §, by Gz we denote the product of all normal F-subgroups of group G.
In particular, we write

Gwd - G®Wda Fp(G) = Gﬁp/mp'
Functions of the form

I wU{w'} — {formations of groups}



Asian-European J. Math. 2009.02:155-169. Downloaded from www.worldscientific.com
by FUDAN UNIVERSITY on 05/05/15. For personal use only

On Laws of Lattices --- 157

are called w-local satellites (see [2]). For every w-local satellite f, we define the class
LE,(f) = (G| G/Gyuq € f(w') and G/F,(G) € f(p) for all p € wN7(G)).

If § is a formation such that § = LF,(f) for an w-local satellite f, then the
formation § is said to be w-saturated, and f is said to be an w-local satellite of §.

Every formation is 0-multiply w-saturated, by definition. For n > 0, a formation
is called n-multiply w-saturated if § = LF,(f) and all nonempty values of f are
(n — 1)-multiply w-saturated formations (see [2]). If a formation § is n-multiply
w-saturated for all natural n, then § is called totally w-saturated.

By [, we denote the set of all 7-closed n-multiply w-saturated formations.
With respect to inclusion, an arbitrary nonempty subset {H; | i € A} of I], has
a greatest lower bound, namely N;caH;; besides, {H; | ¢ € A} has a least upper
bound, the intersections of all elements in l7,, containing U;ea™;. Thus, [], is a
complete lattice. In particular, [7, is the lattice of all 7-closed formations.

A group class closed under taking homomorphic images is called a semiformation
[4]. The symbol I7, form X denotes the intersection of all 7-closed n-multiply w-
saturated formations containing a collection X of groups.

By [2], Lemma 5, if § =[], form X, then § = LF,(f) where

17, form (G/F,(G) |G € X), ifa=pecwn(X),
fla) =< @, ifa=pew\n(X),
17, form (G/Guq | G€X), ifa=u'.

w.

The satellite f is called the minimal [7, _ -valued w-local satellite of § (see [2]).
First we prove the following lemmas.
Lemma 1. Let A be a monolithic group, R a mon-abelian socle of A, M a
semiformation and A € [, form 9. Then A € M.
Proof. We proceed by induction on n. Let n = 0. Then

A €], form M = form M.

Let A ¢ 9. Then, by [1], Corollary 1.2.26, there exists a group H in form 9
and normal subgroups N, M, Ny,..., Ny, My, ..., M; (¢ > 2) of H such that the
following statements hold:

1) A~ H/N and M/N = Soc(H/N);

2) H/N; is a monolithic 9M-group and M,/N; is the socle of H/N; which is
H-isomorphic to M/N.

Clearly Cy(M/N) = N. Hence N; C N. Therefore A ~ H/N € 9, a contradic-
tion. This completes the proof of the lemma for n = 0.

Let n > 0, and let the lemma holds for n — 1. Suppose f is the minimal ], -
valued w-local satellite of § =[], form M. If wN7(R) = @, then A,q = 1, and so,
by [2], Lemma 5, we have

A~ AJAuq € f(W') C 1] form 9.
Consequently, A € M.
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Let wN7(R) # @ and p € w(7(R). Then F,(A) = 1, and by [2], Lemma 5, we
have

A~ A/F,(A) € f(p) €1, _, form 9.

w.

Hence A € M, and the lemma is proved.

Lemma 2 [1], Lemma 4.1.3., Let Ny x ... x Ny = Soc(G) where t > 1, and G
a group with Op(G) = 1. Let M; be the largest normal subgroup in G containing
Ny X ...X Nj—1 X Nig1 X ... X N; but not containing N; (i =1,...,t). Then

1) for every i € {1,...,t}, O,(G/M;) = 1, G/M; is monolithic and its socle
N;M;/M; is G-isomorphic to N; ;

2) Mi(... M =1.

Lemma 3. Let M be a semiformation and A € 17, form M. Then the following
statements hold:

1) if Op(A) =1 and p € w, then A € 17, form My where My = {G/0,(G) | G €
M}

2) if Auqg = 1, then A €17, form My where My = {G/GLa | G € M}.

Proof. If A € 9, the result is clear. Hence we may suppose that A ¢ 9.
Suppose that A is a monolithic group and R is the socle of A. Let n = 0. Then
A €[], form M = form M. Hence, by [1], Corollary 1.2.26, there exists a group H in
form 9, normal subgroups N, M, Ny,..., Ny, My,..., M(t > 2) in H such that the
following statements hold: 1) H/N ~ A, M/N = Soc(H/N); 2) N1(\...N: = 1;
3) H/N; is a monolithic M-group and M;/N; is the socle of H/N; which is H-
isomorphic to M/N. Since Op(A) = 1, we have

A S QRO{H/Nh,H/Nt} Q form 2)3?1.

Let n > 0. Suppose that O,(A) = 1. If R is nonabelian, then Lemma 1 implies
A € 9. This contradicts the choice of A. Hence R is a ¢-group where g € w \ {p}.
Consequently, F,(A) = O4(A). Since for every group G we have

G/Gua = (G/0p(G))/(Gua/Op(G))

= (G/0p(G))/(G/Op(G))was
by [2], Lemma 5, it follows that f(w’) = h(w') where f and h are minimal [, _ -

1
valued w-local satellites of § = [, form 9 and $ = [], form 9y respectively. If

q ¢ w, then A,q =1 and so
A~ AJAuq € f(W) =hW)C9H.

Let g € w. Since for every group G we have

G/Fy(G) = (G/0p(G)) [ (Fy(G)/ Op(G))

= (G/0,(G))/Fo(G/O,(G)),
by [2], Lemma 5, it follows that f(g) = h(q). Hence A/O4(A) € % and
AJF(A) = (A)O4(A))/(Fr(A)/Oq(A))
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= (A4/04(A))/F(A/Oq(A)) € h(r),
for all r € w(7(A). We deduce, that A € §. Analogously A € 7, form 9y where
My ={G/Gua | G € M}.

Now suppose that Soc(A) = Ny x ... x Ny where t > 1. Let M; be the largest
normal subgroup of A containing Ny X...X N;_1 X N;;1X...x N but not containing
N;,i = 1,...,t. Using Lemma 2, we have A € Ro(A/M;,...,A/M;) where A/M;
is monolithic, N;M;/M; is the socle of A/M; and O,(A/M;) = 1. Clearly A/M; €
17, form 9M. As we proved above, A/M; € 7, form 9;. Consequently, A € $, as
claimed.

Let {3; | ¢ € I} be an arbitrary collection of 7-closed n-multiply w-saturated
formations. We denote

VI, (Bilie ) =17 form (| %)
i€l
In particular,

MV, =1, form (SJTUﬁ)

A function f : w|{J{w'} — {formations of groups} is called [], -valued if all its
values belong to the lattice 7, .
Let {fi | i € I} be a collection of I7, -valued functions of the form

firw U{w’} — {formations of groups}.

In this case, by VI, (fi | @ € I) we denote a function f such that f(w') =
17, form (U, fi(w')). In particular,

(f1 VI, f)(W) =17, form (f1(w') | (o’

and for p € w we have f(p) =17, form (U,c; fi(p)). In particular,

(f1VE, fo)(p) = 1, form (f1(p) | fo(p)

if at least one of the formations f;(p) # @. If f;(p) = @ for all i € I, then we
suppose that f(p) = @.

Lemma 4. Let f; be the minimal I7,  -valued w-local satellite of a T-closed
n-multiply w-saturated formation §; where i € I. Then VI, _ (fi | i € I) is the
manimal 17, -valued w-local satellite of § = V], (i€ I).

Proof. Observe that

(%) =G =7(3).
el el

Let f =V (fi|i€I),and let h be the minimal [],  -valued w-local satellite
of §. Let p € w\ (). In this case, for every i € I, we have f;(p) = @. Hence

f(p) = @. Clearly h(p) =&
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Let p € wN7w(F). In this case, there is ¢ € I such that f;(p) # @. Using [2],
Lemma 5, we have

hip) =1, _,form (G/F,(G) | G e | J i) =

iel

17, form (( JI7,  form (G/F,(G) |G € 3:)) =
el
15, form (| fi(p) = (VI _,(fi | i € D))(p).
i€l
Moreover, by [2], Lemma 5, we have
hw') =17,  form (G/Gua | G € U&) =
i€l

17, _ form ( Ul form (G/Gua | G € §i)) =

i€l

15, form ((J filo)) = (VI,,_, (fi | i € D)(W).
iel

Thus vV, (fi | i€ 1) is the minimal [],  -valued w-local satellite of § = VI, (3 |
i € I), and the lemma is proved.

If § = LE,(f) and f(a) C § for all a € w|J{w'}, then f is called an inner
satellite of §.

Lemma 5. If {§; = LF,(fi) | i € I} is a set of T-closed w-saturated formations
Si where f; is an inner 1, _ -valued satellite of §;, then

VL, @iliel)=LF,(V, ,(fili€l)).

Proof. Let {§; | i € I} be a set of 7-closed n-multiply w-saturated formations
and f; be an inner ], -valued w-local satellite of §;. Let § = V[ (8 | i € I),
MM = LF,(V], _,(fi|i€1))and h; be the minimal [],  -valued w-local satellite

Wn—1
of §i. Then by Lemma 4 we have that h = V], _ (h; | i € I) is the minimal ], -
valued w-local satellite of 7-closed formation §. Clearly h < f =V (fi|i € I).

Hence § C 991. Suppose that the converse inclusion is false. Let G be a group of
minimal order in 9\ §. Let R be the socle of G. Then R = G¥. Let p € n(R) w.
Suppose that R is nonabelian. Then F,(G) = 1. Therefore

G~ G/Fy(G) € (V, ,(filieD)(p) =1, form (| fi(p))
icl
Hence, by Lemma 1, Lemma 5, we have

GelJfitcUsics,

icl el
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a contradiction. Consequently, R is a p-group. Then O,(G) = F,(G). But G €
M = LE,(V], _(fi | i € I)). Hence G/O,(G) € 17, _ form (J;c; fi(p)). Since
0,(G/0,(G)) =1, Lemma 3 and [2], imply

G/0y(G) € 1, form (A/Oy(A) | A€ [ fi(p)

icl

=17, form ( UZT form (A/0,(A) | A€ fi(p)))

i€l

=15, form (| hi(p)) = (VI,_, (hi | i € I))(p) = h(p).
iel
Hence, by [2], Lemma 4, we have G € §, a contradiction. Consequently, w (7(R) =
&. Therefore G,q = 1. Applying Lemma 3 and [2], Lemma 5, we have

G~G/Guaell,  form (A/A,q|Ac U fi(w'

el

=17, _ form Ul form (A/ALqa | A€ fi(w )

Wn,
el

=17, form (| Jhi(w (VL (hi i€ )W) = hw).
el
Consequently, § = 9. This proves the lemma.

A subgroup functor 7 is said to be closed [1] if H € 7(G) always implies 7(H) C
7(G). If 7 is a subgroup functor, we denote by T the intersection of all closed functors
7; such that 7 < 7.

For every collection of groups X, by S;X we denote the set of all groups H such
that H € 7(G) for a group G € X (see [1]).

Lemma 6 [1] . Let X be a collection of groups. Then

rform X = QRS+ (X).

The intersection of all 7-closed semiformations containing X is called the 7-closed
semiformation generated by X [1].
Lemma 7 [1] . Let § be a T-closed semiformation generated by X. Then

§ = QS.-X.

Recall that a set of formations € is called a complete lattice of formations (see
[1]) if an intersection of every set of formations in 6 belongs to 6 and there is a
formation § in € such that 9t C § for every formation 9t of . A formation in 6
is called a O-formation. By fform G we denote the intersection of all #-formations
containing a group G.

If 6 is a complete lattice of formations and 9, H € 4, then M) § is the greatest
lower bound for {9, H} in 6, and M Vy § is the least upper bound for {9, H} in 6.
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A complete lattice of formations 6 is called X-separated if for every term
&(z1,...,xm) of the signature {(, Vo}, every O-formations §1,...,Fm and every
group A € X &(F1,. -, 8m) there exist X-groups A1 € §1,..., Am € Fm such that
A € {(fform Aq,. .., 0form A,,).

Lemma 8. The lattice I}, is &-separated.

Proof. Let {(z1,...,2,) be a term of the signature {(),V] }, §1,...,8m be
formations in I7, and A € {(31,...,8m). We proceed by induction on the number
r of occurrences of the symbols in {1, V], } into the term §. We show that there
exist groups A; € §; (i = 1,...,m) such that A € £(My,...,M,,) where M; =
17, form A;. It is obvious for r = 0. We prove the assertion for » = 1 by induction
on n. Let n =0, i.e., either A € §; ()32 or

A €TV, 82 =17 form (§1|82) = form (1| JFo)-

In the first case A € form A()form A. In the second case, by Lemma 6, we have
A~ H/N where

H € Ro(F1 | J%2)-
Clearly HS' (| HS2 = 1. Hence
A € form (H/HS', H/HS?) = form (H/HS")Vv

form (H/H®*) C §1 V], Fo.

Let n > 0, {p1,...,ps} = 7(A) and A € §; V], Fo. Then using [2], Lemma 5,
and Lemma 4 we have

A/Fy,(A) € fi(pi) VT, f2(pi),  AfAwa € (W) V], , f2(o),

where f; is the minimal [},  -valued w-local satellite of §; where j = 1,2. By
induction there exist groups A;; € f1(pi), Ai, € fa(pi), T1 € fr(W'), T2 € fa(w')
such that

A/E, (A) € (IT

w.

L form A; ) v (7

Wn—1 w

. form A;,),

AfApa € (15, form Ty) Vi, — (I7,  form T).

w.

Clearly,
(€

w.

- form Ay ) vi (17

w.

- form A;,) =17,

w.

nflform (Ah ) AlQ)

(I, form Ty) Vi — (1]

w.

form Ty) =17, form (T1,T3).

Let My be a semiformation generated by A;,, and 9 be a semiformation gen-
erated by A;,. By Lemma 7 we have M, = (41,...,4;) and My = (By,...,B;)
where Ay,..., A € QS=(4;,) and By,..., B, € QS=(4,,). Clearly I, M, is a

7-closed semiformation and

A/F, (A) el form (A;,A;,) =1

w.

. form (901, UE))TQ)
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Hence, by Lemma 3, we may suppose that
0p, (Ak)| = 1 = |0y, (B1)]

forallk=1,...,tandl=1,...,r. Applying Lemma 3 and analogous argument we
may suppose that (T;),q =1,1=1,2.

Let D;;, = A1 X ... x Ay and D;, = By X ... x B,. Then

‘Opi(Dil)‘ =1= |Opi (Di,)l-
Besides,
A/F, (A) €l _ form (D;,,Dy,) CI, — form (A;, As,).

Let Z; be a group of order p;, B;;, = Z; 1 D;, and B;, = Z; ! D;,. Using [2] we

have B;, € §1, B;, € §2. Hence
A1 =By, X Boy X ... X By, xTy €F1, Aa=DB1, X Ba, X ... X B, xTs € Fa.
We show that
AeF = (] form Ay) V] (I}, form Ay).

It suffices to prove A/A,q € f(w') and A/F,,(A) € f(p;) where f is the minimal
17, _,-valued w-local satellite of §. Clearly B;, € §. Hence By, /F, (Bi;) € f(p:).
Since O,,(D;,) = 1, we have By, /F,,(B;,) ~ D;,, i.e. D;; € f(p;). Analogously we
deduce that D;, € f(p;). Consequently,

A/F, (A) €1, form (D;,, Diy) € f(ps).
Clearly T1,T> € §. Hence, by [2], Lemma 5, we have
T, ~T;/(T))wa € f(W) =1, form (G/Gua |G €F) = f().

Wn—1

Consequently, I7, _ form (T1,T) C f(w'). Therefore A/A,q € f(w'). This completes
the proof of the lemma for r = 1.

Let a term & have 7 > 1 occurrences of the symbols in {(1, V7, }. We suppose
proving by induction that the lemma holds for terms with less number of occur-

rences. Assume that £ is of the form

fl(xilw .- 7xia)A£2(Ij1v s vij)a
where A € {(, V[, } and

{xil,...,xia}U{le,...,ij}:{xl,...,xm}.

By $1 we denote the formation &1 (Fiy,...,8:,), and by o the formation
& (8., ---+8j,). Then, as it was proved above, there are groups A; € $; and
Ay € $2 such that A € [, form A;Al7, form Az. On the other hand, since the
number of operations in the term &; is less than r, it follows by induction that there
exist groups By € §i,,. .., Ba € 8, such that Ay € £ (1], form By, ...,1], form B,).
Analogously there exist groups Ci € Fj,,...,Cp € Fj, such that Ay €
&(17, form Cy, ..., 17, form Cy).
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Let xi,,\s... @i, € {xj,...,25} and let {@;, ..., 25} N {x;,..., 25} = @.
Assume that
By, for k <t+1,
D;, = { By, x Cy, where x;, = x;_,

for some ¢ € {1,...,b} provided that k > ¢t + 1.

Let Dj, = Crif xj, ¢ {2i,,,,. .., %, }. By M, we denote the formation {7, form D;,
where p =1,...,a, and by X, the formation ], form D; where c=1,...,b. Thus

Ay € & (I, form By, ..., 1, form B,) C
Q ﬁl(l:)nform Dil, ey l:)nfOI'Hl Dza) = fl(ml, ‘e 7ma),
A € &(1], form Cy, ..., 1], form Cp) C

Q ﬁg(l;gnform Djl? ey l;nform Djb) = 52(%1, ey %b)
Consequently, there exist formations K1, ..., R, such that
A€ fl(ﬁil,. .. ,ﬁia)Afg(ﬁjl,. . .,ﬁjb) = f(ﬁl, c.. ,ﬁm)

where &; =[], form K; for K; € §;. This proves the claim.
For every term ¢ of the signature {(, V7, } we denote by £ a term of the signature
{N, VL, _,} obtained from £ by replacing of every symbol V7, by the symbol V[, .
Lemma 9. Let {(x1,...,2m) be a term of the signature {(, VI, } and f; be an
inner I7, _ -valued w-local satellite of a formation §; where i =1,...,m. Then

&1,y 8m) =LF,(E(f1,---s fm))-

Proof. We proceed by induction on the number 7 of occurrences of the symbols
in {(, V[, } into &. Let

6(1‘17 e 7J’Jm) = 61(11‘17. . .,Iia)Aﬁg(l‘jl, e "ij)
where A € {, V], },
{xil7"'7xia}U{le7"'7ij} ={x1,...,zm}.
Assume that the lemma holds for the terms &; and &. Then

61(31'1""’31}1) = LFw(El(fiu""fia))’

€Q(Sj1’ s 73]1;) = LFW(EQ(fjl?' : "fjb))'

It is clear that &,(fi,,..., fi,) and &(fj,,..., fj,) are inner {7, _ -valued w-local
satellites of the formations &1 (F,, - ., i, ) and &2(Fj,, - - -, §;, ), respectively. Hence
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by induction we have

E@1 - 8m) =& Gy Ti) DN &(Fys -5 85,)

= LFW(El(fi17"'?fia)ZEQ(fjl""?fjb)) = LFw(f(flw"?fm))

where A = if A= and A=V  if A=V] , as claimed.

Lemma 10. Let 6 be a X-separated complete lattice of formations and n be a
sublattice of 6 such that n contains all one-generated 0-subformations of the form
0 form A, where A € X, of every formation § € 1. Suppose that a law & = & of the
signature {(,Vo} is true for all one-generated 0-formations belonging to n. Then
the law &1 = &9 s true for all 6-formations belonging to 7.

Proof. Let x;,,...,x;, be arguments occurring in the term &y, let x;,,...,x;, be
arguments occurring in the term &o, and let §;,,...,8i.; 8,85 € 1. We show
that

=685 8ia) € &(Fs--585) =M
Without loss of generality we may suppose that
Tjysoeon &y, €{Tiy, oy Ty }
and
{xjtﬂ,...,ij}ﬂ{xil,...,xia} = .

Let A € §. Then, by assumption there exist X-groups A;,, ..., A4;, such that A;, €
Fi. (where k=1,...,a) and

A € & (fform A;, ... 0form A;).

Let
9, = Oform A;,
and let
i, where z;, = z;_,
N = for some c € {1,...,a} for all k € {1,...,t},

Oform Bj,, for some group Bj, € §;, provided that k > t.
By assumption
§(Dirs - 9i) = ()05 9j5,)-

But &(9;,,--.,9j,) € M. Therefore A € M. Thus F C M. The inverse inclusion
can be proved analogously. Hence § = 91, which completes the proof of this lemma.
Proof of Theorem 1. Fix a law

§i(@iy, s xi,) = oy, 25,) (1)
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of the signature {1, V], }. Let

El(xilw"v‘ria):E2(xj17"~aij) (2)
be the same law of the signature {(,V], _ }.
Suppose that law (2) is true in the lattice [], . Let

1
Sivs s Biai S B

be 7-closed n-multiply w-saturated formations. We show that

&8s 8i) =L@ -5 85)-

Let f;, be the minimal [, -valued w-local satellite of §;, (where ¢ =1,...,a) and
fj, be the minimal {7, -valued w-local satellite of §;, (where d = 1,...,b). Then

using Lemma 9 we have

51(3i17"'7gia) = LFW(Zl(fi17"'7fia))7
52(Sj17 s 73’%) = LFw(ZQ(ij' . ‘7fjb))‘

Besides, formations

fil (w/)a .. 'afia(w/);fjl(w/)a .. 'afjb(w/)

and formations

fil (p)’ .- 'afia (p);fjl(p)7 .- '7fjb(p)

belong to the lattice ],  for every prime p € w. Then by assumption

gl(fi17"‘7fia)(p) = Zl(fil(p)7"'7fia(p)) =

52(fj1 (p)7 .- '>fjb(p)) = ZZ(ij .- '7fjb)(p)

and

61(]01'17' : '7fia)(w/) = El(fil (w/)’ ooy Jig (w/)) =

€Q(fj1 (wl)7 . '7fjb(wl)) = EQ(fjl?' : '?fjb)(w/)'

Consequently,

61(Si1a"'agia) = 52(Sj17"'?gjb)'

Thus law (1) is true in the lattice I7, , and the result is proved.

Now we give some corollaries of Theorem 1.

Corollary 1.1 (A.N. Skiba [3]). The lattice of all saturated formations is mod-
ular.

Corollary 1.2 (L.A. Shemetkov and A.N. Skiba [4]). The lattice of all n-multiply
saturated formations is modular.

Corollary 1.3 (Ballester-Bolinches and L. A. Shemetkov [5]). The lattice of all
p-saturated formations is modular.
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Corollary 1.4 (A. N. Skiba [1]). The lattice of all T-closed n-multiply saturated
formations is modular.

Corollary 1.5 (A. N. Skiba and L. A. Shemetkov [2]). The lattice of all n-
multiply w-saturated formations is modular.

Corollary 1.6 (I. P. Shabalina [7]). The lattice of all T-closed n-multiply w-
saturated formations is modular.

3. Proof of Theorem 2

Proof. Fix a law

§u(wi, - wi,) = Ea(wjys o5 5, 3)
of the signature {0, V[, }. Let
gl(xiu"wxia)ZEQ(xj17"'7ij) (4)

be the same law of the signature {(,V] _ }.
Suppose that law (3) is true in the lattice {7, . We show that law (4) is true in
the lattice I, . By Lemma 10, it suffices to prove that if

Si17"-7gia;3’j17"'7gjb
are every one-generated T-closed (n — 1)-multiply w-saturated formations, then
gl(giu o 731}1) = Z2(Sj1v ce 71?]'1;)'
Let
Siy =1, form A; ..., 8, =1,  form A;;

S =1, form Aj ... F; =1]  form Aj .
We choose prime p € w such that p ¢ w(A4;,,..., 4, A;,..., A4j,). Let
Bi1 :PZAi1,~-~,Bia :PZAia;

BjIZPzAj17""ij:PZAjb’
where P is a group of order p. Since formations

M;, =1, form B;,,...,M;, =1, form B;_;

mjl = l;nform le, e ,‘Jﬁjb = lz;nfOI'Hl ij
belong to [], , we have § = 9 where
S: 51(9)Ti1,...,9ﬁia) and MM = 52(9)Tj1,...,mjb).

Let f;, be the minimal ],  -valued w-local satellite of 9;, (where ¢ = 1,...,a)
and f;, be the minimal /7, _ -valued w-local satellite of 9;, (where d = 1,...,b).
By Lemma 9 we have

fl(mi1,~-~>mia) = LFW(Zl(fi17"'7fia))7
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LMy, ..., My,) = LEL(Eo(fiur -5 )

Let f and m be the minimal I, _ -valued w-local satellites of § and 9, respectively.
Then using [2], Lemma 5 (3) and Lemma 4, we have

f(p) = Zl(fi17"'7fia)(p) :gl(fil(p)7"‘7fia(p))

and

m(p) = ZZ(ij .- '7fjb)(p) = g2(fj1 (p)7 .- '>fjb(p))'

Hence

Z1(fi1 (p)7 . '>fia(p)) = Z2(fj1 (p)7 . ‘7fjb(p))‘

Since O,(A4;,) = 1, by [2], Lemma 5 (3), we have f; (p) = §i;. where c=1,...,a.
Analogously f;,(p) = §;, whered=1,...,0b.
Consequently,

Z](&i17"'7gia) 222(%’j17"'7gjb)7

i.e., law (4) is true in the lattice [, . Thus every law of [], is true in [], . Using
Theorem 1, we have the result.

If w =P, we write I, instead [], . We have the following corollaries.

Corollary 2.1 (A.N. Skiba [1]). Let n and m be nonnegative integers. Then the
law systems of lattices I], and I7. coincide.

If 7 is trivial (7(G) = {G} for every group G), we have the following result.

Corollary 2.2 (L. A. Shemetkov and A. N. Skiba [4]). Let n and m be nonneg-
ative integers. Then the law systems of lattices 1, and l,, coincide.

Finally, we note that V.G. Safonov proved modularity of the lattice of all to-
tally saturated formations [11] and modularity of the lattice of all T-closed totally
saturated formations [12].
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