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NEW CRITERIONS OF EXISTENCE AND CONJUGACY

OF HALL SUBGROUPS OF FINITE GROUPS

WENBIN GUO AND ALEXANDER N. SKIBA

(Communicated by Jonathan I. Hall)

Abstract. In the paper, new criterions for existence and conjugacy of Hall
subgroups of finite groups are given. In particular, the Schur-Zassenhaus the-
orem, Hall theorem and Čunihin theorem are generalized.

1. Introduction

Throughout this paper, all groups are finite, G denotes a finite group and π
denotes a non-empty subset of the set of all primes. A subgroup H is said to be
permutable with a subgroup B if HB = BH. The notation and terminology are
standard, as in [10] and [3].

The famous Schur-Zassenhaus Theorem asserts that: If G has a normal Hall
π-subgroup A, then G is an Eπ′-group (that is, G has a Hall π′-group). Moreover,
if either A or G/A is soluble, then A is a Cπ′-subgroup (that is, any two Hall
π′-subgroups of G are conjugate).

In 1928, Hall [6] proved that: A finite soluble group has a Hall π-subgroup and
any two Hall π-subgroups are conjugate in G.

In 1949, Čunihin developed further the Schur-Zassenhaus and Hall theorems and
proved the following classical result.

Theorem (S. A. Čunihin [1]). If G is π-separable, then G is an Eπ-group and an
Eπ′-group. Moreover, if G is π-soluble, then G is a Cπ-group and a Cπ′-group.

Note that a group G is said to be π-separable if G has a normal series

(∗) 1 = G0 ≤ G1 ≤ . . . ≤ Gt−1 ≤ Gt = G,

where each index |Gi : Gi−1| is either a π-number or a π′-number. A group G is
said to be π-soluble if each index |Gi : Gi−1| of Series (∗) is either a π-prime power
(that is, a power of some prime in π) or a π′-number.

The example of the group PSL(2, 7) shows that the condition of normality for
the members of Series (∗) could not be omitted.
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It is well known that the above Schur-Zassenhaus theorem, Hall theorem and
Čunihin theorem are truly fundamental results of group theory. In connection with
these important results, the following two problems have naturally arisen:

Problem I. Whether the conclusion of the Schur-Zassenhaus Theorem holds if the
Hall subgroup A of G is not normal. In other words, can we weaken the condition
of normality for the Hall subgroup A of G so that the conclusion of the Schur-
Zassenhaus Theorem is still true?

Problem II. Whether we can replace the condition of normality for the members of
Series (∗) by some weaker condition, for example, by permutability of the members
of Series (∗) with some systems of subgroups of G.

Some results pertaining to Problem I have been obtained in [4, 5]. In Section 3
of this paper, we give the following further generalization of the Schur-Zassenhaus
Theorem.

Theorem A. Let A be a Hall π-subgroup of G. Let G = AT for some subgroup T
of G, and let q be a prime. If A permutes with every Sylow p-subgroup of T , for all
primes p �= q, and either A or T is soluble, then T contains a complement of A in
G and any two complements of A in G are conjugate.

Notice that the well known Feit-Thompson theorem about solvability of groups
of odd order is not used in the proof of Theorem A. By using the Feit-Thompson
theorem, we obtain the following stronger version of Theorem A.

Theorem A∗. Let A be a Hall π-subgroup of G. Let G = AT for some subgroup T
of G, and let q be a prime. If A permutes with every Sylow p-subgroup of T for all
primes p �= q, then T contains a complement of A in G and any two complements
of A in G are conjugate.

Recall that a subgroup H of G is said to be a supplement of a subgroup A in G
if AH = G. Let

(∗∗) 1 = H0 ≤ H1 ≤ . . . ≤ Ht−1 ≤ Ht = G

be some subgroup series of G. We say that a subgroup series

1 = Tt ≤ Tt−1 ≤ . . . ≤ T1 ≤ T0 = G

is a supplement of Series (∗∗) in G if Ti is a supplement of Hi in G for all i =
0, 1, . . . , t.

Another purpose of this paper is to give a positive answer to Problem II. We will
prove the following results.

Theorem B. Suppose that G has a subgroup series

1 = H0 ≤ H1 ≤ . . . ≤ Ht−1 ≤ Ht = G

and a supplement

1 = Tt ≤ Tt−1 ≤ . . . ≤ T1 ≤ T0 = G

of this series in G such that Hi permutes with every Sylow subgroup of Ti for all
i = 1, 2, . . . , t. If each index |Hi+1 : Hi| is either a π-number or a π′-number, then
G is an Eπ-group and an Eπ′-group. Moreover, if each π-index |Hi+1 : Hi| is a
prime power, then G has a soluble Hall π-subgroup.
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Corollary 1.1. Suppose that G has a subgroup series

1 = H0 ≤ H1 ≤ . . . ≤ Ht−1 ≤ Ht = G

and a supplement
1 = Tt ≤ Tt−1 ≤ . . . ≤ T1 ≤ T0 = G

of this series in G such that Hi permutes with all Sylow subgroups of Ti for all
i = 1, 2, . . . , t. If each index |Hi+1 : Hi| (i = 0, 1, . . . , t− 1) is a prime power, then
G is an Eπ-group, for any set π of primes.

Corollary 1.2. Suppose that G has a subgroup series

1 = H0 ≤ H1 ≤ . . . ≤ Ht−1 ≤ Ht = G

and a supplement
1 = Tt ≤ Tt−1 ≤ . . . ≤ T1 ≤ T0 = G

of this series in G such that Hi permutes with all Sylow subgroups of Ti for all
i = 1, 2, . . . , t. If each index |Hi+1 : Hi| is a prime power, then G is soluble.

Theorem C. Suppose that G has a subgroup series

1 = H0 < H1 ≤ . . . ≤ Ht−1 ≤ Ht = G

and a subgroup T such that G = H1T and Hi permutes with all subgroups of T for
all i = 1, 2, . . . , t. If each index |Hi+1 : Hi| is either a π-number or a π′-number,
then G is a Cπ-group and a Cπ′-group.

The following example shows that, under the conditions of Theorems A, B or C,
the group G is not necessarily π-separable.

Example 1.1. Let G = A5 × C7, where C7 is a group of order 7 and A5 is the
alternating group of degree 5. Let C5 be a Sylow 5-subgroup of A5. Consider the
subgroup series

(∗ ∗ ∗) 1 = H0 < H1 < H2 < H3 = G,

where H1 = A4 and H2 = A5. Then the series 1 = T3 < T2 < T1 < T0 = G, where
T2 = C7 and T1 = C5×C7, is a supplement of Series (∗∗∗) in G. It is clear also that
Hi permutes with all subgroups of Ti, for all i. Let π = {5, 7}. Then every index of
Series (∗ ∗ ∗) is either a π-number or a π′-number. However, G is not π-separable.

2. Preliminaries

In this section, we cite some known results which are used in our proofs.

Lemma 2.1 (S. A. Čunihin [2, Theorem 1.4.2]). Let N be a normal subgroup of
G. If N and G/N are Cπ-groups, then G is a Cπ-group.

Lemma 2.2 (O. Kegel [8, Theorem 3]). Let A and B be subgroups of G such that
G �= AB and ABx = BxA, for all x ∈ G. Then G has a proper normal subgroup
N such that either A ≤ N or B ≤ N .

Let A be a subgroup of G. A subgroup T is said to be a minimal supplement of
A in G if AT = G but AT0 �= G for all proper subgroups T0 of G.

The following lemma is obvious.

Lemma 2.3. If N is normal in G and T is a minimal supplement of N in G, then
N ∩ T ≤ Φ(T ).
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Lemma 2.4 (P. Hall [7]). Suppose that G has a Hall p′-subgroup for each prime p
dividing |G|. Then G is soluble.

Let A and B be subgroups of G and ∅ �= X ⊆ G. Following [4], we say that A is
X-permutable (or A X-permutes) with B if ABx = BxA for some x ∈ X.

The following lemma is also evident.

Lemma 2.5. Let A,B,X be subgroups of G and K � G. If A is X-permutable
with B, then AK/K is XK/K-permutable with BK/K in G/K.

Lemma 2.6 (O. Kegel [9, Theorem 3]). If a subgroup A of G permutes with all
Sylow subgroups of G, then A is subnormal in G.

Lemma 2.7 (H. Wielandt [11]). If a π-subgroup A of G is subnormal in G, then
A ≤ Oπ(G).

3. Proofs of Theorems A and A*

Theorem A is a special case (when X = 1) of the following theorem.

Theorem 3.1. Let X be a normal π-separable subgroup of G and A a Hall π-
subgroup of G. Let G = AT for some subgroup T of G, and let q be a prime. If A
is X-permutable with every Sylow p-subgroup of T for all primes p �= q and either
A is soluble or every π′-subgroup of T is soluble, then T contains a complement of
A in G and any two complements of A in G are conjugate.

Proof. Suppose that this theorem is false and let G be a counterexample of minimal
order. Then, clearly, T is not a subgroup of G with prime power order and |π′| ≥ 2.
We now proceed with the proof via the following steps.

(1) X = 1.
Suppose that X �= 1 and let D be a minimal normal subgroup of G contained

in X. Then D is either a π-group or a π′-group. In the former case we have
D ≤ A. Otherwise, D ≤ T . We first claim that the hypothesis is still true for G/D.
Clearly, G/D = (AD/D)(TD/D), where AD/D is a Hall π-subgroup of G/D and
X/D is a normal π-separable subgroup of G/D. Moreover, if A is soluble, then
AD/D 
 A/(A ∩ D) is soluble. Suppose that every π′-subgroup of T is soluble.
Let V/D be a π′-subgroup of TD/D. Then V = V ∩ TD = D(V ∩ T ). Since
V/D = D(V ∩T )/D 
 (V ∩T )/(V ∩T ∩D), (V ∩T )/(V ∩T ∩D) is a π′-group. If
D is a π′-group, then D ≤ T and so V is a π′-subgroup of T . Hence V is soluble and
thereby V/D is soluble. Now assume thatD is a π-group. Then V ∩T = [V ∩T∩D]E
for a Hall π′-subgroup E of V ∩ T by the Schur-Zassenhaus Theorem. Since E is
soluble by hypothesis, V/D is soluble. Thus every π′-subgroup of TD/D is soluble.
Now let Q/D be a Sylow p-subgroup of TD/D, where p �= q. Then for some Sylow
p-subgroup P of T , we have Q/D = DP/D. By hypothesis, A X-permutes with P .
Hence, AD/D is XD/D-permutable with Q/D = DP/D in G/D by Lemma 2.5.
Therefore, our claim holds.

Since |G/D| < |G|, the minimal choice implies that TD/D contains a comple-
ment V/D of AD/D in G/D and every two complements of AD/D in G/D are
conjugate. Obviously, V/D = (V ∩TD)/D = D(V ∩T )/D 
 (V ∩T )/(V ∩T ∩D).
Since AD/D is a Hall π-subgroup of G/D, V/D is a Hall π′-subgroup of G/D. If D
is a π′-group, then V is a Hall π′-subgroup of G. Hence V is a complement of A in
G. If D is a π-group, then by the Schur-Zassenhaus Theorem, V ∩T = [V ∩T ∩D]E,
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for a Hall π′-subgroup E of V ∩ T . It follows that V = D(V ∩ T ) = DE and so
G = AE. Thus, E is a complement of A in G since E is a Hall π′-subgroup of G.

Now let T1 and T2 be Hall π′-subgroups of G, where T2 ≤ T . Then T1D/D =
T2

xD/D, for some x ∈ G. If D is a π′-group, then T1 = T2
x, which contradicts

the choice of G. Hence D is a π-group. By hypothesis, either D or T2
x is soluble.

Therefore, by the Schur-Zassenhaus Theorem, T1 and T2
x are conjugate in T1D.

This implies that every Hall π′-subgroup of G is conjugate with T2 and hence every
two complements of A in G are conjugate, which contradicts the choice of G.

(2) Oπ(G) = 1 and Oπ′(G) = 1 (see the proof of (1)).
(3) A permutes with every Sylow p-subgroup P of G, for all p �= q such that a

Sylow p-subgroup of T is a Sylow p-subgroup of G.
Since a Sylow p-subgroup Tp of T is a Sylow p-subgroup of G, P = Tp

x, for some
x ∈ G. Because G = AT , x = ta, where a ∈ A and t ∈ T . Since A permutes with
the Sylow subgroup Tp

t of T , we obtain that A permutes with Tp
x = P .

(4) G is not simple.
Let P be any Sylow p-subgroup of G, where q �= p ∈ π′. Then by (2), AP x =

P xA, for all x ∈ G. Besides, AP �= G since |π′| ≥ 2. Hence G is not simple by
Lemma 2.2.

(5) T has a Hall π′-subgroup.
Suppose that it is false. Then D = A∩ T �= 1. Obviously, T = DT. Since A is a

Hall π-subgroup of G, D is a Hall π-subgroup of T . Let P be a Sylow p-subgroup of
T , where p �= q. Since AP = PA by (1), (A∩T )P = AP ∩T = PA∩T = P (A∩T ).
Hence the hypothesis holds for (D,T ). If T �= G, then T is a Cπ′-group by the
choice of G. In particular, T has a Hall π′-subgroup E, which, evidently, is a Hall
π′-subgroup G.

Now assume that T = G. First suppose that A is a q-group. Let D be a proper
normal subgroup ofG. We show thatD is a Cπ-group. Let p �= q be a prime dividing
|D|, P a Sylow p-subgroup of D and Gp a Sylow p-subgroup of G containing P .
Then by hypothesis, AGp = GpA. Hence, AGp ∩D is a Hall {q, p}-subgroup of D.
Besides, A∩D is a Sylow q-group of D and P = Gp∩D. Since (A∩D)P ≤ AGp∩D
and |AGp ∩ D| = |A ∩ D||P |, we have that (A ∩ D)P = AGp ∩ D = P (A ∩ D).
Therefore the hypothesis holds for D = (A ∩ D)D. This implies that D is a Cπ′-
group by the choice of G. Let Dπ′ be a Hall π′-subgroup of D. By the Frattini
argument, G = DN , where N = NG(Dπ′). It follows from |G : N | = |D : N ∩D|
that |G : N | = qa. Let A0 be a Sylow q-subgroup of N . Since T = G, by
(1), A permutes with any Sylow p-subgroup P of G, where p �= q. Hence Ax also
permutes with all Sylow p-subgroups of G, where p �= q. We may, therefore, assume
that A0 ≤ A. Then A ∩ N = A0 and, clearly, the hypothesis holds on N = A0N .
In view of (2), N �= G. Hence N is a Cπ′-group by the choice of G. Let E be a
Hall π′-subgroup of N . Then, evidently, E is also a Hall π′-subgroup of G since
|G : N | = qa.

Now let T1 and T2 be Hall π′-subgroups of G. ThenD1 = T1∩D andD2 = T2∩D
are Hall π′-subgroups of D. Hence D1 and D2 are conjugate in D. It follows that
NG(D1) = NG(D2)

x for some x ∈ G. Since T1 ≤ NG(D1) and T2 ≤ NG(D2), T1 is
a conjugate of some Hall π′-subgroup of NG(D2). Hence T1 and T2 are conjugate
in G. This contradiction shows that A is not a Sylow q-subgroup of G. Let P be
any Sylow p-subgroup of G, where p �= q is a prime dividing |A|. Since T = G, by
(2), AP x = P xA = A, for all x ∈ G. Hence PG ≤ A, which contradicts (2).
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(6) G/D is a Cπ′-group, for every non-trivial normal subgroup D of G.
In view of (5), we may, without loss of generality, assume that T is a Hall π′-

subgroup of G. Hence, as in the proof of (1), we obtain that G/D satisfies the
hypothesis. The minimal choice of G implies that G/D is a Cπ′-group.

(7) Every proper normal subgroup D of G is a Cπ′-group.
By (5), we may assume that G = AT , where A is a Hall π-subgroup and T is a

Hall π′-subgroup. Then D = (D∩A)(D∩T ). Let p �= q be a prime dividing |T ∩D|,
P a Sylow p-subgroup of T ∩ D and Gp a Sylow p-subgroup of G containing P .
Then by hypothesis, AGp = GpA. Hence AGp∩D is a Hall π∪{p}-subgroup of D.
Besides, A∩D is a Hall π-subgroup ofD and P = Gp∩D. Since (A∩D)P ≤ AGp∩D
and |AGp ∩ D| = |A ∩ D||P |, (A ∩ D)P = AGp ∩ D = P (A ∩ D). Therefore the
hypothesis holds for D = (A ∩D)(D ∩ T ). The minimal choice implies that D is a
Cπ′-group.

Final contradiction. By (4), G has a proper normal subgroup D �= 1. By (6)
and (7) both D and G/D are Cπ′-groups. Hence G is a Cπ′-group by Lemma 2.1.
The final contradiction completes the proof.

Proof of Theorem A*. In view of the Feit-Thompson Theorem about solvability of
groups of odd order, we know that either every π-group or every π′-group is soluble.
Hence Theorem A* is a corollary of Theorem A.

4. Proof of Theorem B

Theorem B is a special case (when X = 1) of the following theorem.

Theorem 4.1. Let X be a normal π-separable subgroup of G. Suppose that G has
a subgroup series

1 = H0 ≤ H1 ≤ . . . ≤ Ht−1 ≤ Ht = G

and a supplement

1 = Tt ≤ Tt−1 ≤ . . . ≤ T1 ≤ T0 = G

of this series in G such that Hi X-permutes with every Sylow subgroup of Ti for
all i = 1, 2, . . . , t. If each index |Hi+1 : Hi| is either a π-number or a π′-number,
then G is an Eπ-group and an Eπ′-group. Moreover, if each π-index |Hi+1 : Hi| is
a prime power, then G has a soluble Hall π-subgroup.

Proof. Suppose that this theorem is false and let G be a counterexample of minimal
order. Without loss of generality, we may assume that H1 �= 1. We proceed with
the proof by proving the following claims:

(1) The assertions of the theorem hold for every non-trivial quotient G/N of G.
We consider the series

(1) 1 = H0N/N ≤ H1N/N ≤ . . . ≤ Ht−1N/N ≤ HtN/N = G/N

and its supplement

1 = TtN/N ≤ Tt−1N/N ≤ . . . ≤ T1N/N ≤ T0N/N = G/N

in G/N . By Lemma 2.5, HiN/N is XN/N -permutable with any Sylow subgroup
of TiN/N for all i = 1, 2, . . . , t. On the other hand, since |Hi+1N/N : HiN/N | =
|Hi+1N : HiN | = |Hi+1 : Hi| : |N ∩ Hi+1 : N ∩ Hi|, every index of the series (1)
is either a π-number or a π′-number (a π-prime power or a π′-number). Moreover,
obviously, XN/N 
 X/(X ∩ N) is π-separable. This shows that the hypothesis
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holds on G/N . Hence in the case N �= 1, the assertions of the theorem hold for
G/N by the choice of G.

(2) Oπ′(G) = 1 = Oπ(G).
Suppose that D = Oπ′(G) �= 1. Then by (1), G/D has a Hall π′-subgroup A/D

and a Hall π-subgroup B/D. Then, obviously, A is a Hall π′-subgroup of G. By
the Schur-Zassenhaus Theorem, D has a complement V in B, which, clearly, is a
Hall π-subgroup of G. Hence G is an Eπ-group and an Eπ′-group. Besides, if every
π-index of series (1) is a prime power, then B/D has a soluble Hall π-subgroup
B/D. It follows that V is also soluble. This contradiction shows that Oπ′(G) = 1.
Analogously, we may prove that Oπ(G) = 1.

(3) X = 1.
Indeed, if N is a minimal normal subgroup of G contained in X, then N is either

a π-group or a π′-group, which contradicts (2).
(4) T1 �= G.
Suppose that T1 = G. Then by hypothesis and (3), H1 permutes with all Sylow

subgroups of G. It follows from Lemma 2.6 that H1 is subnormal in G. Since H1

is either a π-group or a π′-group, H1 ≤ Oπ(G) or H1 ≤ Oπ′(G) by Lemma 2.7. It
follows from (2) that H1 = 1, which contradicts H1 �= 1. Hence (4) holds.

(5) The assertions of the theorem hold for T1.
We consider the series

(2) 1 = H0 ∩ T1 ≤ H1 ∩ T1 ≤ . . . ≤ Ht−1 ≤ Ht ∩ T1 = T1.

Then the series

1 = Tt ≤ Tt−1 ≤ . . . ≤ T1

is a supplement of the series (2) in T1 since (Hi ∩T1)Ti = HiTi ∩T1 = G∩T1 = T1.
Since Hi+1 = HiT1 ∩Hi+1 = Hi(Hi+1 ∩ T1), |Hi+1 : Hi| = |Hi+1 ∩ T1 : Hi ∩ T1|,
for all i = 1, 2, . . . , t − 1 and |H1 ∩ T1 : H0 ∩ T1| = |H1 ∩ T1| ≤ |H1 : 1|, we see
that every index of the series (2) is either a π-number or a π′-number. Moreover, if
every π-index of the series (1) is a prime power, then every π-index of the series (2)
is a prime power. Now let E be a Sylow subgroup of Ti. By (3) and the hypothesis,
HiE = EHi. Hence HiE ∩ T1 = E(Hi ∩ T1) = (Hi ∩ T1)E. This shows that the
hypothesis holds for T1. The minimal choice of G implies that (5) holds.

Final contradiction. Let (T1)π and (T1)π′ be a Hall π-subgroup and a Hall π′-
subgroup of T1, respectively. By (3) and the hypothesis, H1 permutes with all
Sylow subgroups of (T1)π. Hence H1 permutes with (T1)π. Similarly, H1 permutes
with (T1)π′ . By hypothesis, H1 is either a π-group or a π′-group. Assume that H1

is a π-group. Since G = H1T1, we see that Gπ = H1(T1)π is a Hall π-subgroup of
G and (T1)π′ is a Hall π′-subgroup of G. If H1 is a π′-group, then Gπ′ = H1Tπ′

is a Hall π′-subgroup of G and Tπ is a Hall π-subgroup of G. Finally, we prove
that if every π-index of the series (1) is a prime power, then G has a soluble Hall
π-subgroup. In fact, by (5), we see that (T1)π is soluble. If H1 is a π′-group, then
(T1)π is a soluble Hall π-subgroup of G since G = H1T1. If H1 is a p-group, then
H1(T1)π is a Hall π-subgroup of G. Since (T1)π is soluble and H1 permutes with
every Sylow subgroup of (T1)π, we see that H1(T1)π is soluble by Lemma 2.4. The
contradiction completes the proof.
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5. Proof of Theorem C

Theorem C is a special case (when X = 1) of the following theorem.

Theorem 5.1. Let X be a normal π-separable subgroup of G. Suppose that G has
a subgroup series

1 = H0 < H1 ≤ . . . ≤ Ht−1 ≤ Ht = G,

where H1 �= 1, and a subgroup T such that TH1 = G and Hi X-permutes with all
nilpotent subgroups of T for all i = 1, 2, . . . , t. If the index |Hi+1 : Hi| is either a
π-number or a π′-number, then G is a Cπ-group and a Cπ′-group as well.

Proof. Suppose that this theorem is false and let G be a counterexample of minimal
order. By Theorem 3.2, G has a Hall π-subgroup S and a Hall π′-subgroup J . Hence
we may assume that either some Hall π-subgroup S1 of G is not conjugate with S
or some Hall π′-subgroup J1 of G is not conjugate with J . We may, without loss of
generality, assume that 2 �∈ π. Then S is soluble by the Feit-Thompson Theorem
of groups of odd order. We proceed with the proof via the following steps.

(1) The assertion of the theorem holds for every non-trivial quotient G/N of G.
Consider the series

(3) 1 = H0N/N ≤ H1N/N ≤ . . . ≤ Ht−1N/N ≤ HtN/N = G/N

of G/N . Then (H1N/N)(TN/N) = G/N . Let V/N be any nilpotent subgroup of
TN/N . Then V = N(V ∩T ) and so V/N 
 V ∩T/V ∩T ∩N. Let V0 be a minimal
supplement of V ∩T∩N in V ∩T . Then by Lemma 2.3, V0 is nilpotent. HenceHi X-
permutes with V0 by hypothesis. Besides, V/N = N(V ∩T ) = NV0(V ∩T ∩N)/N =
NV0/N . Hence by Lemma 2.5, HiN/N is XN/N -permutable with any nilpotent
subgroup of TN/N , for all i = 1, 2, . . . , t. This shows that the hypothesis holds for
G/N . Hence, in the case N �= 1, the assertion of the theorem holds for G/N by the
choice of G.

(2) Oπ′(G) = 1 = Oπ(G).
Suppose that D = Oπ′(G) �= 1. Then by (1), there are elements x, y ∈ G such

that S1
xD = SD and J1

yD = JD. Since SD/D 
 S is soluble, by the Schur-
Zassenhaus Theorem, S1

x and S are conjugate in SD. On the other hand, since
D ⊆ J , J1

y = J . This contradiction shows that Oπ′(G) = 1. Analogously, we can
prove that Oπ(G) = 1.

(3) X = 1.
Indeed, if N is a minimal normal subgroup of G contained in X, then P is either

a π-group or a π′-group, which contradicts (2).
(4) T �= G (see the proof of (4) in the proof of Theorem 3.2).
(5) The assertions of the theorem hold for T (see the proof of (5) in the proof

of Theorem 3.2).
(6) If D is a normal subgroup of G and H1 ≤ D, then D = G.
Suppose that D �= G. Let Di = Hi∩D, for all i = 1, 2, . . . , t. Consider the series

(4) 1 = D0 ≤ D1 ≤ . . . ≤ Dt−1 ≤ Dt = D.

First note that D = D ∩ H1T = H1(D ∩ T ). Let E be a nilpotent subgroup of
D ∩ T . Then HiE = EHi and so HiE ∩ D = E(Hi ∩ D) = EDi = DiE. Thus
Di permutes with every nilpotent subgroup of D ∩ T for all i = 1, 2, . . . , t− 1. On
the other hand, |Di : Di−1| = |(D ∩ Hi)Hi−1 : Hi−1|||Hi : Hi−1|. Hence each
index |Di : Di−1| is either a π-number or a π′-number. Therefore D is a Cπ-group
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and a Cπ′-group by the choice of G. Since 1 �= H1 ≤ D, G/D is a Cπ-group and
a Cπ′-group by (1) and the choice of G. It follows from Lemma 2.1 that G is a
Cπ-group and a Cπ′-group, which contradicts the choice of G. Hence, (6) holds.

(7) If H1 is a π-group (π′-group ) and D is a normal subgroup of G containing
a Hall π-subgroup of T (containing a Hall π′-subgroup of T , respectively), then the
hypothesis holds for D.

Suppose, for example, that H1 is a π-group. We claim that D = (H1∩D)(T∩D).
In fact, let E be a Hall π-subgroup of T contained in D and Tπ′ a Hall π′-subgroup
of T . Since H1 is a π-group and G = H1T , Tπ′ is also a Hall π′-subgroup of
G. Clearly H1E is a Hall π-subgroup of G. Hence D = (D ∩ H1E)(D ∩ Tπ′) =
E(D ∩H1)(D ∩ Tπ′) = (D ∩H1)(E(D∩ Tπ′)) = (D ∩H1)(T ∩D). Thus, our claim
holds. Now, by similar inference as in (6), we see that the hypothesis holds for D.

(8) If H1 is a π-group (π′-group) and E is a Hall π-subgroup of T (a Hall π′-
subgroup of T ), then EG �= G.

Assume, for example, that H1 is a π-group. Since G = H1T , we have that
x = ht, where h ∈ H1 and t ∈ T , for any x ∈ G. Because H1 permutes with all
Sylow subgroups of T , H1E

t = EtH1. Hence H1E
x = H1E

th = EthH1. Now by
Lemma 2.2, either H1

G �= G or EG �= G. But in view of (7), the former case is
impossible. Hence EG �= G.

Final contradiction. In view of (1), (7), (8) and Lemma 2.1, G is a Cπ-group
and a Cπ′-group. The contradiction completes the proof.

Remark. We prove Theorem C on the base of the Feit-Thompson Theorem of groups
of odd order. The following fact may be proved without using this deep result.

Theorem. Suppose that G has a subgroup series

1 = H0 < H1 ≤ . . . ≤ Ht−1 ≤ Ht = G

and a subgroup T such that G = H1T and Hi permutes with all subgroups of T for
all i = 1, 2, . . . , t. If each index |Hi+1 : Hi| is either a π-number or a π′-number,
then G is an Eπ-group and an Eπ′-group. Moreover, if each π-index |Hi+1 : Hi| is
a prime power, then G is a Cπ-group and a Cπ′-group.
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