УДК 539.18

Г. Б. ДЕМИДОВИЧ, В. Ф. КИСЕЛЕВ, О. В. НИКИТИНА

О ЛОКАЛИЗОВАННЫХ ЭЛЕКТРОННЫХ СОСТОЯНИЯХ НА АТОМАРНО-ЧИСТОЙ ПОВЕРХНОСТИ ГРАФИТА, КРЕМНИЯ И ГЕРМАНИЯ

(Представлено академиком М. М. Дубининым 7 І 1972)

Согласно (⁴), обрыв периодической структуры на поверхности идеального ковалентного кристалла приводит к появлению высокой концентрации состояний Шокли, которые могут рассматриваться как разорванные валентные связи (свободные радикалы). В запрещенной зоне кристалла этим состояниям соответствуют две подзоны, из которых нижняя в основном состояния заполнена электронами с параллельными спинами, верхняя — пустая. Условия, необходимые для возникновения состояний Шокли, исключают возможность появления состояний Тамма, и наоборот. Структура реальной поверхности искажена по сравнению с объемом кристалла (², ³). Присутствие на поверхности неупорядоченных силовых полей приводит к возникновению дополнительных разрешенных состояний в запрещенной зоне кристалла («хвосты» плотности состояний) (⁴).

Наиболее прямым методом изучения электронных состояний является метод э.п.р. В литературе имеется ряд исследований спектров э.п.р. от порошков Ge и Si, полученных дроблением соответствующих монокристаллов в ультравакууме при комнатной температуре (2, 5-7). Обнаруженные парамагнитные центры связываются различными авторами или с разорванными на поверхности валентными связями, или с дефектами в приповерхностной области кристалла, или с кислородными комплексами или углеродными загрязнениями. Для получения более однозначной информации мы в настоящей работе на несколько порядков увеличили дисперсность исследуемых порошков, применив метод виброизмельчения кристаллов в вакууме $\sim 10^{-9}$ тор (²). Благодаря этому не только резко увеличилось количество поверхностных центров, но существенно и уменьшился коэффициент загрязнения поверхности (⁸). В отличие от предыдущих исследований, мы проводили дробление исходных кристаллов при разных температурах — от 77 до 700° К.

В качестве исходных монокристаллов использовался реакторный графит: С (⁹, ⁴⁰), *n*-Ge ($\rho \simeq 30 \text{ ом} \cdot \text{см}$) и *p*-Si ($\rho \simeq 2000 \text{ ом} \cdot \text{см}$), содержащий различное количество растворенного кислорода — $\ge 10^{18}$ ат $\cdot \text{см}^{-3}$ (образцы Si^I) и $\le 10^{16}$ ат $\cdot \text{см}^{-3}$ (образцы Si^{II}). Перед виброизмельчением грубо раздробленные кристаллы и сама мельница длительное время тренировались в вакууме при 800° К для удаления растворенных газов. Удельная поверхность виброизмельченных порошков определялась методом БЭТ по низкотемпературной адсорбции аргона (после хемосорбционных измерений) и составляла для образцов С $\sim 200 \text{ м}^2/\text{г}$, Ge 2—5 м²/г и Si $\sim 1 \text{ м}^2/\text{г}$. Спектры э.п.р. снимались на спектрометре ЭПР-3 с чувствительностью $\sim 10^{10}$ спин/гс в интервале температур от 77 до 300° К.

Рассмотрим данные э.п.р. от образцов, диспергированных при 300° К (С₃₀₀, Si₃₀₀, Ge₃₀₀). Проведенные ранее (⁹, ¹⁰) измерения э.п.р. не обнаружили парамагнитных центров на поверхности образцов С₃₀₀ с точностью ≤ 10⁷ спин см². Предварительные опыты с Ge₃₀₀ привели к такому же результату (²). В настоящей работе мы уточнили эти данные, используя бо-

нее высокодисперсные образцы и более чувствительный радиоспектрометр. Как при 77, так и при 300° К не обнаружен сигнал э.п.р. от Ge₃₀₀, что согласуется с данными (⁷). Таким образом, можно утверждать, что на атомарно-чистой поверхности C₃₀₀ и Ge₃₀₀, образованной дроблением кристаллов в ультравакууме при комнатной температуре, спиновые центры отсутствуют с точностью $\leq 10^7 - 10^9$ спин·см⁻². К иным результатам привели опыты с более широкозонным полупроводником — кремнием, Как в образцах обычного кремния (Si¹), так и в обескислороженных об-

Рис. 1

разцах (Si^{II}) мы наблюдали одинаковые сигналы 1), (табл. 1, рис. э.п.р. откуда следует, что сигнал от Si обязан своим происхорадикалам -Si' жлением а не кислородным комплексам. Параметры сигнала хорошо согласуются с данными, полученными на порошках Si (11, 12) и на поверхности раскола монокристалла Si (⁵). Последнее подтверждает возможность использования диспорошков персных для изучения поверхностных парамагнитных центров.

К совершенно новым результатам привели из-

мерения э.п.р. на образцах, диспергированных при 77° К (\overline{C}_{77} и \overline{G}_{77}). В образцах \overline{C}_{77} был обнаружен сигнал э.п.р., состоящий из двух компопент — широкой, связанной с разорванными о-связями углерода, и узкой, обязанной частично делокализованным π -электронам (¹⁰) (рис. 1, табл. 1). В случае \overline{G}_{77} мы наблюдали одиночный симметричный сигнал почти Гауссовой формы (рис. 1, табл. 1). При изменении температуры образцов выше 77° К *g*-фактор и ширина линии не изменялись, концентрация спинов изменялась по закону Кюри. Аналогичные сигналы э.п.р. появля-

			Таблица 1		
	Т-ра помола, °К	N [*] _S , cm ⁻²	ΔΗ, гс	g-фактор	
Графит	300 77	$\leqslant \frac{10^{7}}{10^{13}}$	$\frac{-}{55}$	2,0270 2,0036	
Кремний	300 700	$\sim 10^{14}$	6 6	2,0056 2,0056	
Германий	300 77	$\leq \frac{10^9}{10^{13}}$	35	2,0240	

* Для графита N_S относится к призматическим граням, для Si и Ge ко всей поверхности частиц.

лись на образцах С и Ge, полученных размолом исходных кристаллов при 77° К в атмосфере аргона, и не возникали при помоле в атмосфере воздуха, хотя тепловые условия и режим дробления в обоих случаях были идентичны. Это указывает на поверхностную природу возникающих центров. Отношение ширины линий в ряду С, Si. Ge (табл. 1) удовлетворительно согласуется с соответствующим отношением времен спин-решеточной релаксации и оценками, сделанными в (⁷).

Полученные данные можно интерпретировать следующим образом. Известно (5), что поверхность раскола Ge и Si в основном состоит из выхода граней (111). В случае графита призматические реакционноспособные грани составляют 6% от всей поверхности (⁹). При расколе кристаллов при 77° К часть поверхностных атомов С и Ge сохраняет свою нормальную гибридизацию sp³. Ненасыщенные sp_z-орбитали, ответственные за наблюдаемый сигнал э.п.р. (состояния A на рис. 1*), согласно (1) могут рассматриваться как незаполненные акцепторные Шоклиевские состояния. Как видно из табл. 1, концентрация этих состояний невелика, остальные атомы либо изменяют свою гибридизацию, либо образуют валентно-насыщенные связи друг с другом. Последнее приведет к нарушению в порядке расположения атомов, что согласуется с данными по дифракции медленных электронов (², ³). С повышением температуры измельчения, благодаря локальным тепловым нагревам, возникающим в мельнице при расколе частиц, увеличивается вероятность термических забросов электронов на акцепторные Шоклиевские состояния.

Заполненное Шоклиевское состояние может представлять собой либо триплетное состояние B_1 , либо состояние со спаренными спинами B_2 (рис. 1). В случае графита магнитостатическими измерениями (¹⁰), а также измерениями э.п.р. при гелиевой температуре (сигнал от C_{300} отсутствовал) показано, что реализуется состояние B_2 . Концентрация центров Aсущественно зависит от условий помола. Недавно (¹³) удалось обнаружить близкий по параметрам слабый сигнал от Ge_{300} в условиях малых локальных нагревов при расколе кристалла.

Данные по кремнию не противоречат предлагаемой модели. Благодаря большей ширине запрещенной зоны и меньшей концентрации свободных носителей Шоклиевские состояния не заполняются при дроблении кремния при 300° К — концентрация спиновых центров ~ 10^{14} спин см⁻² (табл. 1). Для того чтобы реализовать условия, близкие к случаю С и Ge, мы провели дробление Si при 700° К. В этом случае интенсивность сигнала э.п.р. уменьшалась на ~2 порядка — на поверхности присутствуют в основном заполненные состояния *Б*. Интересно отметить, что при расколе при 300° К широкозонного GaAs также наблюдался сигнал э.п.р., который отсутствовал при дроблении в этих же условиях узкозонного InSb (¹⁴).

Захват электрона из разрешенных зон на состояние A, т. е. переход $A \rightarrow B$ соответствует отрицательному заряжению поверхности, что согласуется с данными (¹⁵, ¹⁶). В случае Ge₃₀₀ (преобладают состояния B) отрицательный заряд поверхности на 2—3 порядка больше, чем в Si₃₀₀ (где преобладают состояния A). Развиваемое в этих работах представление о двух поверхностных зонах согласуется с нашими данными.

Адсорбция кислорода, по-видимому, в первую очередь протекает на наиболее активных центрах E с образованием двойных связей X=O. Появление связей C=O в образцах C_{300} доказано химическим анализом (¹⁰). Начальные теплоты адсорбции O₂ на образцах Ge₃₀₀ близки к энергиям образования Ge=O-связи (115 ккал/моль) **. Адсорбция O₂ (а также H₂ и Cl₂) на графите C₃₀₀ не изменяет заряд поверхности. Электроны, локализованные в состояниях E, остаются на поверхности, участвуя в образовании двойных связей (¹⁰). Адсорбция на состояниях A энергетически менее выгодиа. В случае радикальной поверхности С₇₇ адсорбция O₂ при 300° К приводила к иоявлению перекисного радикала $C - O - O^{*}$ (⁹).

Радикальных форм адсорбции О₂ на образцах Ge₇₇ и Si₃₀₀ мы не наблюдали. Центры A в Ge и Si оказались весьма устойчивы к окислению, что согла-

^{*} На рис. 1 X == С, Si, Ge.

^{**} Эти данные относятся к окислению в атмосфере кислорода, содержащего следы примесей, скорее всего H₂O. Сверхсухой кислород вообще не окисляет поверхность Ge (⁸).

суется с (⁵). При образовании окисной пленки они зарастают — мы наблюдали сигналы от центров A в окисленных образцах Ge и Si.

Прямое подтверждение существования центров Б дали опыты с адсорбцией атомарного водорода из тлеющего разряда на нерадикальной поверхности образцов Сзоо. Адсербция атомов Н привела к появлению сигнала э.п.р. с g = 2,0036 и $\Delta H = 11 \pm 1$ гс, который по своим параметрам близок к сигналу от л-электронов, частично локализованных около С-Нсвязи (рис. 1). Поскольку ширина линии (при смазанной с.т.с.) обусловлепа магнитным моментом ядра ин. мы провели аналогичный опыт с дейтерием ($\mu_{\rm H}/\mu_{\rm D} = 3.25$). В соответствии с теорией сигнал э.п.р. от электронов около связей С-- Д действительно оказался в три раза уже $g = 2,0036; \Delta H = 4.0 \pm 0.5$ гс. В случае германия аналогичный результат был получен при адсорбции парабензохинона (*n*-БХ) на нерадикальной поверхности Ge₃₀₀. Адсорбция *n*-БХ сопровождалась появлением сложного сигнала э.п.р.: узкий компонент, с g=2,002 и $\Delta H\simeq 3$ гс связан с образованием анион-радикала (n-БХ)- и аналогичен сигналу от (n-БХ)- на реальной поверхности Ge (17). Параметры широкого компонента g = 2,020и $\Delta H \simeq 22$ гс — приближаются к параметрам сигнала от Ge₇₇. Некоторое различие в ΔH обусловлено электрическим полем, связанным с перераспределением заряда в комплексе Ge — *n*-БХ (рис. 1). Эти данные более непринужденно объясняются с точки зрения локализованных электронных пар типа Б и менее удовлетворительно согласуются с моделью делокализованных электронных состояний, связанных с сильным перекрыванием волновых функций неспаренных электронов соседних атомов (5). Параметры сигнала э.п.р. в последнем случае должны зависеть от степени сопряжения связей соседних атомов и быть весьма чувствительными к перестройке структуры поверхности. В монокристалле переход от структуры 2×1 к структуре 2×8 и 1×8 (Ge) или 7×7 (Si) наблюдается при 400° К (Ge) и 620° К (Si) (³). В случае дисперсных порошков перестройка структуры поверхности всегда происходит при более низких температурах (²). С этой точки зрения невозможно объяснить высокую термическую устойчивость центров А. Мы наблюдали существенное уменьшение сигнала э.п.р. от центров А (без изменения параметров линии) только выше 550° К (для Ge) и 700° К (для Si). Центры Б оказались еще более устойчивыми. В случае графита концентрация центров В не изменялась при прокаливании до 1100° К. Наблюдаемая в (³) корреляция между сравнительно низкотемпературными изменениями структуры поверхности п электрофизическими параметрами, скорее всего, связана с изменениями группы состояний, обусловленных неупорядоченностью поверхности, а пе с изменением параметров Шоклиевских состояний типа А (или Б).

Авторы выражают глубокую благодарность М. Томашеку и Д. Ханеману за интересные дискуссии.

Московский государственный университет им. М. В. Ломоносова Поступило 31 XII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ М. Томашек, Я. Коутецкий, Сборн. Электронные явления в адсорбции и катализе на полупроводниках, М., 1969. ² В. Ф. Киселев, Поверхностные явления в полупроводниках и диэлектриках, «Наука», 1970. ³ М. Henzler, Adv. in Solid State Physics, 1971, р. 187. ⁴ V. L. Bonch-Bruevich, Theory of Condenced Matter, Vienna, 1968. ⁵ D. Hancman, Phys. Rev., 170, 705 (1968). ⁶ D. J. Miller, D. Haneman, Surf. Sci., 19, 45 (1970). ⁷ J. Higinbotham, D. Haneman, Surf. Sci., 19, 39 (1970). ⁸ Г. Б. Демидович, Р. Б. Джанелидзе, В. Ф. Киселев, Физика и техника полупроводников, 3, 629 (1969). ⁹ В. Ф. Киселев, О. В. Никитина, ДАН, 171, 374 (1966). ¹⁰ G. В. Demidovich, V. F. Kiselev et al., J. chim. phys., 65, 1072 (1968). ¹¹ М. F. Chung, D. Haneman, J. Appl. Phys., 37, 1879 (1966). ¹² P. Chan, A. Steineman, Surf. Sci., 5, 267 (1966). ¹³ D. Haneman, Proc. of Intern. Conference on Solid Surfaces, Boston, 1971. ¹⁴ D. J. Miller, D. Haneman, Phys. Rev. B. 3, 2918 (1971). ¹⁵ D. R. Frankl. Electrical Properties of Semiconductor Surfaces, 1967. ¹⁶ Б. А. Нестеренко, О. В. Снитко, Физика и техника полупроводников, 3, 487 (1969); Укр. физ. журн., 12, 586 (1967). ¹⁷ В. Д. Казарицкий, С. Н. Козловидр., ДАН, 195, 115 (1970):