УДК 519.3 MATEMATUKA

А. Д. ИОФФЕ

ТЕОРЕМА СУЩЕСТВОВАНИЯ ДЛЯ ЗАДАЧ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ

(Представлено академиком Л. В. Канторовичем 29 XII 1971)

1°. В классических теоремах Тоннели (¹), Нагумо (²) и Макшейна (³), гарантирующих существование абсолютно непрерывного решения задачи

$$\int_{t_0}^{t_1} f(t, x, \dot{x}) dt \rightarrow \inf,$$
 (1)

$$x(t_0) = x_0, \quad x(t_1) = x_1, \quad x = R^n,$$
 (2)

и различных их обобщениях, данных в (4,5) и других работах, в более или менее явной форме предполагается ограниченность снизу подынтегральной функции f. Такое предположение вполне приемлемо, если множество допустимых значений x ограничено по условию задачи. В общем случае, требование ограниченности f снизу исключает из рассмотрения многие важные задачи, например, задачи для интегралов вида $\int (|\dot{x}|^m - |x|^k) dt$. В некоторых работах это требование было ослаблено. Например, Олех ((5), теорема 2) разрешает f убывать по x (при фиксированных t, \dot{x}), но не быстрее линейной функции.

Мы доказываем здесь теорему существования, в которой f может убывать по x с любой скоростью, но при этом убывание по x и рост по \dot{x} согласованы некоторым образом. Эта теорема содержит большинство цитированных результатов и вместе с тем охватывает упоминавшиеся задачи для функционалов вида $\int (|x|^m - |\dot{x}|^h) dt$. Мы увидим далее, что оценки роста и убывания f, участвующие в формулировке теоремы (условие f), являются в известном смысле точными и не могут быть ослаблены.

- 2° . Мы будем рассматривать задачи типа (1), (2), но для функций весьма общего вида. Именно, мы будем предполагать, что
- 1) f(t, x, y) отображает $[t_0, t_1] \times R^n \times R^n$ в $(-\infty, \infty]$, т. е. значение ∞ допускается наравне с вещественными числами;
- 2) f есть борелевская функция относительно σ -алгебры, порожденной всеми множествами вида $\Delta \times A$, где Δ измеримое подмножество $[t_0, t_1]$, а A борелевское подмножество $R^n \times R^n$;
 - 3) f полунепрерывна снизу по x, y при каждом $t \in [t_0, t_1]$;
 - 4) f выпукла по y при каждых $t \in [t_0, t_1], x \in \mathbb{R}^n$.

Условие 1) эквивалентно допущению разного рода ограничений на x и \dot{x} . Благодаря ему, схемой (1), (2) охватываются и задачи оптимального управления с различными ограничениями (см. п. 5°). Условие 2) носит в основном технический характер, однако в силу своей чрезвычайной общности оно не накладывает практически никаких ограничений на класс рассматриваемых задач. Условия 3) и 4) обеспечивают полунепрерывность снизу функционала (1) в естественных функциональных пространствах.

Условий 1)-4) недостаточно для доказательства существования решения в задаче (1), (2). Необходимы еще дополнительные условия, ха-

рактеризующие рост f по x и y. Мы будем предполагать, что

5) при всех $x, y \in \mathbb{R}^n$ и почти всех $t \in [t_0, t_1] *$

$$f(t, x, y) \geqslant \varphi(|y|) - \psi(|x|) + r(t), \tag{3}$$

где

5a) φ — неотрицательная выпуклая функция на $[0, \infty)$ и $\varphi(0) = 0$; 5б) ф — неотрицательная непрерывная и неубывающая функция на $[0, \infty)$:

5B) $\lambda^{-1}\phi(\lambda) \to \infty$ при $\lambda \to \infty$;

5г)
$$\phi\left(\frac{2\lambda}{t_1-t_0}\right)-\psi(\lambda_0+\lambda)\to\infty$$
 при $\lambda\to\infty$, где $\lambda_0=\max(|x_0|,|x_1|);$

5д) r(t) суммируема на $[t_0, t_1]$.

Именно условие 5г) является решающим. В нем согласуется скорость убывания по x со скоростью роста по y. Остальные условия встречались и раньше. Ситуация, рассмотренная в большинстве цитированных работ, соответствует случаю $\psi \equiv 0$. В статье (5), теорема 2, предполагается по существу что $\psi(\lambda) = c\lambda$ (c > 0).

Теорема 1. Пусть интегрант f(t, x, y) удовлетворяет условиям

1) - 5).

Tогда, если хотя бы для одной абсолютно непрерывной функции x(t), удовлетворяющей условиям (2), интеграл (1) конечен, то задача (1), (2)

имеет решение в классе абсолютно непрерывных функций.

3°. Проиллюстрируем эту теорему на примере простейшей задачи с интегрантом $f(t, x, y) = |y|^m - |x|^k$, m, k > 1. При k > m f не удовлетворяет условиям теоремы (не выполнено условие 5г)). Хорошо известно, однако, что в этом случае нижняя грань в задаче (1), $(\tilde{2})$ равна $-\infty$, и, следовательно, решения не существует. При m > k из теоремы следует существование решения для всяких t_0 , t_1 , x_0 , x_1 . Наконец, если m=k, теорема гарантирует существование решения при $t_1 - t_0 < 2$. С другой стороны, легко показать, что при $t_1-t_0>2$ найдется столь большое число m, что нижняя грань в задаче (1), (2) при $f=|y|^m-|x|^m$ равна $-\infty$. Таким образом, условие 5г) не может быть ослаблено.

4°. Наметим план доказательства теоремы. Оно базируется на двух

основных леммах.

Лемма 1. Пусть функции φ и ψ удовлетворяют условиям 5a) — 5r). Тогда для всяких $c>0,\,T>0,\,T\leqslant t_{\scriptscriptstyle 1}-t_{\scriptscriptstyle 0}$ множество $A\left(c,T\right)$ абсолютно непрерывных функций x(t) таких, что

$$\int_{\mathbf{0}}^{T} \left(\varphi \left(\left| \dot{x} \left(t \right) \right| \right) - \psi \left(\left| x \left(t \right) \right| \right) \right) dt \leqslant c, \quad x \left(0 \right) = x_0, \quad x \left(T \right) = x_1,$$

компактно в сильной топологии $C^n_{[t_0,t_1]}$.

Доказательство леммы строится по следующей схеме. Рассмотрим функцию

$$\omega(c,t) = \sup \left\{ \lambda \geqslant 0 \middle| t \varphi(t^{-1} \lambda) - t \psi(\lambda_0 + \lambda) \leqslant c \right\}$$

 $(c>0,\ t>0)$. Нетрудно проверить, что $\omega(c,t)\geqslant 0$, конечна при $t \leq \frac{1}{2}(t_1 - t_0)$ (в силу 5г)), не убывает (в силу 5а) и 5б)) и $\omega(c, t) \to 0$ при $t \rightarrow 0$ (в силу 5a) и 5в)).

Пусть $x(t) \in A(c, T)$. Положим

$$\gamma_0(x) = \int_{0}^{T/2} |\dot{x}(t)| dt, \quad \gamma_1(x) = \int_{T/2}^{T} |\dot{x}(t)| dt.$$

^{*} |x| — эвклидова норма вектора $x \in \mathbb{R}^n$.

Используя интегральное неравенство Иенсена и монотонность ф, нетрудно получить оценку

$$c \geqslant \int_{0}^{T} (\varphi(|\dot{x}|) - \psi(|x|)) dt = \int_{0}^{T/2} (\varphi(|\dot{x}|) + \psi(|x|)) dt +$$

$$+ \int_{T/2}^{T} (\varphi(|\dot{x}|) - \psi(|x|)) dt \geqslant \frac{T}{2} \left(\varphi\left(\frac{2}{T} \gamma_{0}(x)\right) - \psi(|x_{0}| + \gamma_{0}(x)) \right) +$$

$$+ \frac{T}{2} \left(\varphi\left(\frac{2}{T} \gamma_{1}(x)\right) - \psi(|x_{1}| + \gamma_{1}(x)) \right).$$

$$(4)$$

Поскольку $\inf\left\{\phi\left(\frac{2}{T}\gamma\right)-\psi\left(\lambda_{0}+\gamma\right)|\gamma>0\right\}>-\infty$, из (4) следует существование таких чисел $c_0 > 0$, $c_1 > 0$, что

$$c_{0} \geqslant \frac{T}{2} \left(\varphi \left(\frac{2}{T} \gamma_{0} (x) \right) - \psi \left(\lambda_{0} + \gamma_{0} (x) \right), \right.$$

$$c_{1} \geqslant \frac{T}{2} \left(\varphi \left(\frac{2}{T} \gamma_{1} (x) \right) - \psi \left(\lambda_{0} + \gamma_{1} (x) \right) \right)$$

для всех $x(t) \Leftarrow A(c, T)$. Поэтому

$$\gamma_0(x) \leqslant \omega(c_0, T/2), \quad \gamma_1(x) \leqslant \omega(c_1, T/2).$$

Эти неравенства означают равномерную ограниченность A(c,T). Но в этом случае условие 5в) влечет равностепенную непрерывность A(c,T).

 Π ем м а 2. В условиях 1) — 5) функционал (1) полунепрерывен снизу $e \ C_{[l'o,l_1]}^n$. Доказательство леммы используют следующее

всех x и y, если только g удовлетворяет оценке типа (3).

Предпожение Если g(x,y) — полунепрерывная снизу и выпуклая по у функция на $R^m \times R^n$, $g_{\varepsilon}(x,y) = \inf \{g(z,y) | z \in R^m, |z-x| \leqslant \varepsilon\}$ и $g_{\varepsilon}^{**}(x,y)$ — вторая сопряженная g_{ε} по у, то $\lim_{\varepsilon \to 0} g_{\varepsilon}^{**}(x,y) = g(x,y)$ для

Это утверждение позволяет свести доказательство леммы к случаю, когда f не зависит от x, где оно не представляет труда *.

Сопоставляя леммы 1 и 2, сразу приходим к доказательству теоремы.

5°. Мы уже отмечали выше, что задачи оптимального управления могут быть сведены к задачам типа (1), (2). Это можно делать разными способами. Вот один из них. Рассмотрим задачу

$$\int_{t_0}^{t_1} g(t, x, u) dt \to \inf; \tag{5}$$

$$\dot{x} = F(t, x, u), \quad u \in U(t, x) \subset \mathbb{R}^m; \tag{6}$$

$$x \in X(t), \quad x(t_0) = x_0, \quad x(t_1) = x_1. \tag{7}$$

Положим

$$f(t, x, y) = \begin{cases} \inf\{g(t, x, u) \mid u \in U(t, x), F(t, x, u) = y\}, \\ \text{если } x \in X(t), \\ \infty, & \text{если } x \notin X(t). \end{cases}$$
(8)

Тогда задача (5) — (7) эквивалентна задаче (1), (2) с только что введенной функцией f, если, например, g и F непрерывны по x, u и измеримы

^{*} Следует заметить, что Рокафеллар в неопубликованной еще работе «Optimal arcs and the minimum value function in problems of Lagrange» показал, что лемма 2 справедлива и без условия 5).

по t, графики многозначных отображений $t \to X(t)$ и $(t,x) \to U(t,x)$ принадлежат σ -алгебре, описанной в условии 2), причем множества X(t), $t \in [t_0,t_1]$, и U(t,x), $t \in [t_0,t_1]$, $x \in R^n$, замкнуты, а отображение $x \to t$

 $\rightarrow U(t,x)$ полунепрерывно сверху при всяком $t \in [t_0,t_1]$.

Если потребовать, чтобы f была выпуклой по y и наложить на g и F условия, гарантирующие достижимость нижней грани в (8) и справедливость условий 1)-5) для f, то теорема 1 повлечет некоторую теорему существования для задачи (5)-(7). Этого можно достичь разными способами. Можно потребовать, например, чтобы g и F удовлетворяли неравенствам

$$g(t, x, u) \geqslant \varphi(|u|) - \psi(|x|),$$
$$|F(t, x, u)| \geqslant |u|,$$

где ф и ф такие же, как в 5а) — 5г), или соотношениям

$$|F(t, x, u)| \to \infty$$
 npm $u \in U(t, x), |u| \to \infty,$
 $g(t, x, u) \geqslant \varphi(|F(t, x, u)|) - \psi(|x|),$

и т. д.

Поступило 14 XII 1971

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ L. Tonnelli, Ann. Scuola Norm., Pisa, 3, 401 (1934). ² M. Nagumo, Japan J. Math., 6, 178 (1929). ³ E. J. McShane, Ann. Scuola Norm. Pisa, 3, 181 (1934). ⁴ L. Cesari, Trans. Am. Math. Soc., 124, 369 (1966). ⁵ C. Olech, Trans. Am. Math., Soc., 136, 159 (1969).