УДК 541.183.02: 532.62: 576.314

ФИЗИЧЕСКАЯ ХИМИЯ

п. м. кругляков, ю. г. ровин, а. ф. корецкий

ОБ ОРИЕНТАЦИИ МОЛЕКУЛ ПОВЕРХНОСТНОАКТИВНОГО ВЕЩЕСТВА В АДСОРБЦИОННЫХ СЛОЯХ НА ПОВЕРХНОСТИ РАЗДЕЛА ДВУХ ЖИДКОСТЕЙ

(Представлено академиком П. А. Ребиндером 3 I 1972)

Вопреки своему важному значению, свойства монослоев на поверхности раздела жидкость — жидкость ($\mathcal{K} - \mathcal{K}$) исследованы очень мало по сравнению со свойствами на поверхности раздела жидкость — газ ($\mathcal{K} - \Gamma$). Отмечается, что при переходе от поверхности раздела $\mathcal{K} - \Gamma$ к границе раздела вода — органическая фаза (масло) происходит значительное расширение монослоев (¹), ослабление влияния длины цепи на состояние монослоя и увеличение площади на молекулу в насыщенных адсорбционных слоях (²). Относительно ориентации углеводородных радикалов в масле обычные методы исследования монослоев на границе раздела $\mathcal{K} - \mathcal{K}$ (¹) не дают никаких сведений.

Для некоторых малорастворимых п.а.в., способных к образованию оптически черных двухсторонних углеводородных пленок в водной среде (и соответственно устойчивых эмульсий типа вода в масле), оказалось возможным исследовать их ориентацию в насыщенных адсорбционных слоях в черных пленках и на поверхности раздела объемных фаз ж — ж, используя измерения толщин пленок и краевых углов, возникающих в зоне соприкосновения пленок с объемной фазой. Черная углеводородная пленка в водной среде схематически представлена на рис. 1. Рассмотрим очень кратко некоторые свойства такой пленки, необходимые в дальнейшем для интерпретации результатов опытов.

Натяжение черной пленки γ отличается от удвоенного межфазного натяжения σ_{12} на границе объемных фаз. Вследствие этого в зоне соприкосновения пленки с мениском возникает краевой угол θ . Причины возникновения краевых углов в тонких пленках рассматривались в (³⁻⁵). По условиям равновесия $\gamma = 2\sigma_{12} \cos \theta$.

Разница в натяжении $\Delta = 2\sigma_{12}(1 - \cos \theta)$ обычно относительно мала и в черных углеводородных пленках в основном определяется энергией ван-дер-ваальсовского взаимодействия (⁶)

$$\Delta \approx A' / 42\pi H^2, \tag{1}$$

где A' — сложная константа Гамакера; H — толщина пленки.

Определение адсорбции п.а.в. Γ_i^F в черной пленке прямым путем затруднено, но можно доказать, что разница между удвоенной адсорбцией на границе раздела объемных фаз Γ_i^S и Γ_i^F $\Delta\Gamma_i = 2\Gamma_i^S - \Gamma_i^F$ очень мала. Кук и др. (⁷) на основании термодинамического анализа пришли к выводу, что $\Delta\Gamma_i$ обычно значительно меньше 1%. На основании экспериментальных измерений краевых углов в углеводородных пленках (⁸) можно дать и более точную оценку $\Delta\Gamma_i$:

$$\Delta\Gamma_{i} = 2\Gamma_{i}^{S} - \Gamma_{i}^{F} = -\left(\frac{2\partial\sigma_{12}}{\partial\mu} - \frac{\partial\gamma}{\partial\mu}\right)H\frac{\partial\Pi}{\partial\mu} = -\frac{2\partial\sigma_{12}}{\partial\mu}\left(1 - \cos\theta\right) - H\frac{\partial\Pi}{\partial\mu}, (2)$$

где μ — химический потенциал п.а.в., а П — расклинивающее давление в пленке. Обычно краевые углы в черных углеводородных пленках равны 2—3°, но иногда достигают ~10° (⁸, ⁹). Таким образом, если бы краевой угол и П не изменялись с концентрацией п.а.в. в пленке, то максимальная разница $\Delta\Gamma_i$ составляла бы ~1% от τ_i^s .

Из опытов по определению констант Гамакера (⁸) известно, однако, что изменение натяжения в пленке $\Delta = 2\sigma_{12}(1 - \cos\theta)$ хорошо соответствует изменению, определяемому по формуле (1) на основании теоретических констант Гамакера и что $\frac{\partial \Pi}{\partial \mu}$ мало. Поэтому с уменьшением адсорбции краевой угол должен уменьшаться, так что величина $2\sigma_{12}(1 - \cos\theta)$ должна быть практически постоянной, а $2\Gamma_i^S = \Gamma_i^F$.

Рис. 1. Черная углеводородная пленки в водной среде. а — пленка в капилляре фторопластовой ячейки; б — структура черной пленки; Н — толщина всей пленки; h — толщина углеводородной части пленки; б — толщина слоя полярных групп

Доказать экспериментально, что $2\sigma_{12}(1 - \cos \theta)$ остается строго постоянной при изменении химического потенциала, трудно, так как устойчивые иленки получаются в области, где $\mu \approx \text{const.}$ Но даже если величина $2\sigma_{12}(1 - \cos \theta)$ немного изменяется, можно считать, что адсорбция и ориентация молекул в черной пленке и на границе объемных фаз практически одинаковы, так как изменение энергии Δ в любом случае весьма мало по сравнению с общим изменением межфазного натяжения при адсорбции $\Delta\sigma_{12} = 30-50$ дин/см.

По своей структуре черные углеводородные пленки представляют собой бимолекулярный слой ориентированных молекул п.а.в. с некоторым количеством углеводородной фазы, так что толщина углеводородной части иленки определяется длиной и ориентацией радикала используемого п.а.в. (¹⁰). Подтверждением тому, что в черной пленке углеводородные радикалы противоположных адсорбционных слоев действительно приходят в соприкосновение друг с другом, является постоянство толщины пленки при приложении к ней любой разности потенциалов, при которой пленка еще не разрывается (¹¹). Таким образом, зная толщину углеводородной сердцевины черной пленки и длину радикалов, можно установить ориентацию радикалов в пленке и адсорбционном слое на границе раздела объемных фаз.

Микроскопические углеводородные пленки получали в капилляре фторопластовой ячейки. Устройство и принцип действия ячейки описаны в (⁸). Толщина углеводородной сердцевины черных пленок определялась емкостным способом. Емкость пленки измерялась мостом переменного тока Р-568, падение напряжения на пленке составляло 2—10 мв. Измерения проводили в диапазоне частот, где общая емкость системы остается постоянной (¹⁰). Определяемая таким путем емкость представляет собой емкость углеводородной части черной пленки, так как вкладом полярных групп и двойных электрических слоев в общую емкость можно пренебречь (¹²).

Площадь черной пленки определяли под микроскопом с помощью окуляра с измерительной шкалой. Толщину углеводородной части пленки h рассчитывали по формуле: $h = 8,85\varepsilon/C$, Å, где C — удельная электрическая емкость, $\mu\phi/cm^2$; ε — диэлектрическая проницаемость пленки.

Органическая фаза	Концентра- Ция ксилана, мол/л	Удельная емкос С, µф/см ²	Адсорбция * Г _т мол/см²	Диэлектрич. проницае- мость плен- ки, ε	Толщина углеводор. части пленки h, Å	Адгезия ** <i>W</i> , эрг/см²
н-Декан CCl4 п-Ксилол м-Ксилол о-Ксилол Толуол Бензол	5.10^{-3} 2,5.10 ⁻² 3,75.10 ⁻² 3,75.10 ⁻² 3,75.10 ⁻² 3,75.10 ⁻² 5.10 ⁻² 10 ⁻¹	$\begin{array}{c} 0,38\\ 0,47\\ 0,50\\ 0,50\\ 0,50\\ 0,56\\ 0,73\end{array}$	3,71 3,50 2,23	2,05 2,11 2,11 2,16 2,18 2,13 2,06	48 40 37 38 39 34 25	$\begin{array}{r} 45,44\\53,43\\63,24\\63,48\\66,68\\65,18\\67,52\end{array}$

Зависимость толщины черных пленок от природы органической фазы

* Предельную адсорбцью рассчизывали по значениям $(d\sigma/d\ln C)_{max}$ из изотерм межфазного натижении.

** Адгезия рассчитана по фогмулс $W = \sigma_1 + \sigma_2 - \sigma_{12}$, где σ_1 , $\sigma_2 -$ поверхностные натяжения воды и углеводорода; σ_{12} – межфазное натяжение. Поверхностные и межфазные натяжения взяты из (¹⁵).

В пленках из предельных углеводородов є во всех случаях приблизительно одинакова, так как значения диэлектрической проницаемости радикалов и углеводородов близки. В ароматических и других углеводородах є определяли на основании состава пленки и объемных значений є радикалов п.а.в. и углеводорода аналогично (¹³).

Были использованы углеводороды: гептан — эталонный, толуол — особой степени чистоты, остальные — марки х.ч.; п.а.в.: эфир ангидроксилита и стеариновой (ксилан С) и олеиновой кислот (ксилан 0)*, моноэфир триэтаноламина и олеиновой кислоты) эмульгатор ФМ)* диглицерид олеиновой кислоты **, эфир центаэритрита и олеиновой кислоты (пентол)*** и лецитин **** применили без дополнительной очистки.

Удельная емкость черных пленок, полученных из растворов ксилана 0, эмульфора ФМ, пентола, диолеина и лецитина в *н*-декане, а также пленок из раствора ксилана 0 эмульфора ФМ в предельных углеводородах от *н*-гептана до *н*-гексадекана включительно, оказалась равной 0,38 \pm \pm 0,01 µф/см², что соответствует толщине 48 Å ($\epsilon = 2,06$) и хорошо согласуется с удвоенной длиной радикала при его вертикальной ориентации ($L_{\rm родикала} = 46,5$ Å). В радикалах с непредельной цепью (олеиновый остаток) такая ориентация должна сопровождаться деформацией химических связей, смежных с двойной связью (в цис-изомерах). Для ряда других п.а.в. с различными радикалами соответствие толщин черных пленок, полученных из предельных углеводородов, с длиной углеводородной цепи, установлено Хейдоном с сотрудниками ***** (¹⁰).

Интересная закономерность в ориентации радикала с непредельной ценью наблюдается с изменением природы органической фазы. Как видно из данных табл. 1, толщина пленок сильно уменьшается с увеличением адгезии углеводорода к воде (с 48 Ä в пленках из*н*-декана до 25 Å в пленках из бензола). Предполагая, что, как и в предельных углеводородах, углево-

^{*} Синтезированы в Научно-исследовательском институте органических полупродуктов и красителей.

^{**} Синтезированы на Львовском химическом заводе.

^{***} Синтезированы во Всесоюзном научно-исследовательском институте синтетических и натуральных душистых веществ.

^{****} Фирмы «Merck».

^{*****} В последних работах этих авторов (¹³, ¹⁴) обнаружено уменьшение толщин черных пленок с увсличением молекулярной массы предельного углеводорода, начиная с додекана. что противоречит данным, полученным теми же исследователями ранее (¹⁰)

дородная цепь олеинового остатка вытянута, можно получить угол его наклона α к поверхности раздела: sin $\alpha = h / 2L$. В частности, в бензольных пленках угол наклона составляет $\alpha \approx 33^{\circ}$.

Оныты по определению толщин черных пленок, стабилизированных ксиланом С, показали, что ориентация молекул п.а.в. с радикалами предельного строения в предельных углеводородах вертикальная, а на границе с другими маслами изменяется подобно изменению ориентации олеиновых радикалов.

Использованный в этой работе метод исследования толщин насыщенных адсорбционных слоев и ориептации молекул п.а.в. в них не может быть прямо применен к ненасыщенным адсорбционным слоям, вследствие того, что пленки с такими монослоями неустойчивы. Однако можно предиоложить, что в разреженных адсорбционных слоях на границе раздела воды с ароматическими и другими полярными углеводородами ориентация цепей должна быть горизонтальной, так как даже в насыщенных адсорбционных слоях угол наклона радикала к поверхности раздела достаточно мал.

Институт неорганической химии Сибирского отделения Академии наук СССР Новосибирск Поступило 13 XII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Е. Хатчинсон, Сборн. Мономолекулярные слон, ИЛ, 1956, стр. 187. ² А. Е. Таубман, ДАН, 74, 759 (1950). ³ Б. В. Дерягин, Г. А. Мартынов, Ю. В. Гутон, Колл. журн., 27, 357 (1965). ⁴ Н. Ниіятап, К. J. Муяеls, J. Phys. Chem., 73, 489 (1969). ⁵ А. Sheludko, Годишник Соф. унив., 62, 47 (1969). ⁶ П. М. Кругляков, Ю. Г. Ровин, А. Ф. Корецкий, Изв. СО АН СССР, сер. хим., № 2, в. 1 (1972). ⁷ G. М. Соок, W. D. Redwood et al., Koll-Zs. u. Zs. Polymere. 227, 28 (1968). ⁸ П. М. Кругляков, Ю. Г. Ровин, А. Ф. Корецкий, Изв. СО АН СССР, сер. хим., № 4, в. 2 (1972). ⁹ D. А. Науdоп, J. L. Taylor, Nature, 217, 739 (1968). ¹⁰ J. L. Taylor, D. А. Науdon, Disc. Farad. Soc., 42, 51 (1966); D. А. Науdon, J. Ат. Ой. Сhem. Soc., 45, 230 (1968). ¹¹ Ю. Г. Ровин, П. М. Кругляков, К. Ф. Корецкий, Изв. СО АН СССР, сер. хим., № 4, в. 2 (1972). ⁹ D. А. Науdon, Disc. Farad. Soc., 42, 51 (1966); D. А. Науdon, J. Ат. Ой. Сhem. Soc., 45, 230 (1968). ¹¹ Ю. Г. Ровин, П. М. Кругляков, К. Ф. Корецкий, Изв. СО АН СССР, сер. хим., № 4, в. 2 (1972). ⁹ Д. А. Науdon, Disc. Farad. Soc., 42, 51 (1966); D. А. Науdon, J. Ат. Ой. Сhem. Soc., 45, 230 (1968). ¹¹ Ю. Г. Ровин, П. М. Кругляков, К. Ф. Корецкий, Изв. СО АН СССР, сер. хим., № 4, в. 2 (1972). ⁹ Д. А. Науdon, Disc. Farad. Soc., 42, 51 (1966); D. А. Науdon, J. Ат. Ой. Сhem. Soc., 45, 230 (1968). ¹¹ Ю. Г. Ровин, П. М. Кругляков, А. Ф. Корецкий, Изв. СО АН СССР, сер. хим., в. 6, 196 (1970); Ю. Г. Ровин, П. М. Кругляков и др., Материалы симпозиума: Биофизика Мембран, Каунас 1974, в. 2. ¹² Т. Напай, D. А. Науdon, J. L. Тауlor, J. Theoret. Biol., 9, 278 (1965); С. Т. Еverett, D. А. Науdon, J. Membrane Biol., 5, 277 (1971). ¹⁴ D. М. Andrews, E. D. Manev, D. А. Науdon, Special Disc. Farad. Soc., № 1, 46 (1970). ¹⁵ R. J. Good, E. Elbring, Ind. Eng. Chem., 62, 54 (1970).