УЛК 541.127

ФИЗИЧЕСКАЯ ХИМИЯ

2 -

объем:

 $(d \approx$

- сосуд

А. А. МАНТАШЯН, Г. Л. ГРИГОРЯН, А. С. СААКЯН, академик АН АрмССР А. Б. НАЛБАНДЯН

ОТРИЦАТЕЛЬНЫЙ ТЕМПЕРАТУРНЫЙ КОЭФФИЦИЕНТ СКОРОСТИ РЕАКЦИИ ОКИСЛЕНИЯ ПРОПАНА

Явление отрицательного температурного коэффициента максимальной скорости реакции, обнаруженное впервые на примере окисления пропа-на (¹), а затем и других углеводородов (², ³) на протяжении многих лет привлекает внимание исследователей, оставаясь до конца неразгаданным. Очевидно, что на пути установления причин, приводящих к возникновению этого интересного явления, полезными могут быть сведения о кинетических закономерностях накопления свободных радикалов.

С этой пелью в данной работе применен новый принцип изучения медленных газофазных реакций (4), для обнаружения свободных радикалов и изучения кинетики их накопления в процессе окисления пропана в области

отрицательного температурного коэффициента максимальной скорости реакции. Опыты проводились в статических условиях. Схема установки представлена на рис. 1. При всех температурах, реагирующая смесь $C_3H_8\pm O_2$ подавалась в реактор 1 ($l=30~{
m cm},~d=6.9~{
m cm}$) при начальном давлении 250 тор. Изменение давления в реакторе фиксировалось при помощи стеклянного мембранного манометра 2. С целью увеличения предела измерений к пему был присоединен небольшой дополнительный объем 3, содержащий воздух при атмосферном давлении. Периодическим перепуском газа из этого объема в колокол мембранпого манометра осуществлялась компенсация избыточного давления в манометре и тем самым создавалась возможность дальнейшей регистрации изменения давления в реакторе.

Вытяжка и вымораживание радикалов из зоны реакции осуществлялись по методике, описанной в работе (5). С торца реакционного сосуда 1 в зопу реакции вводилась кварцевая трубка, заканчивающаяся узкой диафрагмой-щелью 5 ($d \approx 50 \mu$). Небольшая часть реагирующей смеси по ходу процесса откачивалась через диафрагму и направлялась на охлаждаемый жидким азотом пальцеобразный отросток сосуда Дьюара 6, помещенного в резонатор радиоспектрометра э.п.р. 7, на котором происходило вымора-живание. К газовому потоку после диафрагмы 5, как и в условиях работы (⁵), с целью стабилизации радикалов, подмешивался углекислый газ матрица, в строго заданном количестве. Давление струи смеси газов не Рис. 2. Кинетика накопления на охлажденной поверхности радикалов, вытянутых из зоны реакции. h_s — максимальная амплитуда сигнала перекисных радикалов, h_3 — амплитуда спектра э.п.р. эталона. I — при 348°, 2 — 364°, 3 — 375°, 4 — 392°, 5 — 436°, 6 — 480°

превышало $10^{-2} \div 10^{-1}$ тор. Количество реакционной смеси, вытянутое из реактора за время всего эксперимента, не превышало 5% от общего количества и поэтому можно полагать, что процесс не претерпевал заметных возмущений. Действительно, данные, полученные в двух сосудах (в данном и в три раза превышающем по объему сосуде) при одинаковом количестве

вытянутого газа, заметно не различаются. По ходу процесса (начиная с момента заполнения реактора исходной смесью) производилась непрерывная последовательная регистрация спектров э.п.р. накапливаемых радикалов. Зарегистрированные в наших условиях спектры радикалов при всех температурах и временах контакта существенно не различались и были идентичны спектрам перекисных радикалов (⁴). С целью получения большего числа экспериментальных точек по ходу накопления радикалов производилась непрерывная последовательная регистрация лишь максималь-

Рис. 3. Зависимость максимальной концентрации радикалов (1) и максимальной скорости реакции (2) от температуры в области отрицательного температурного коэффициента

ной амплитуды центрального расщепления. Кинетика изменения давления и кинетика накопления радикалов изучались раздельно.

Рис. 4. Зависимость концентрации радикалов от температуры, построенная по начальным участкам кинетических кривых рис. 2 ($t_{\rm K} = 20$ сек.)

На рис. 2 приводятся кинетические кривые накопления радикалов на охлажденной поверхности, полученные при различных температурах в области отрицательного температурного коэффициента максимальной скорости реакции. Как видим, эти кривые имеют отчетливо выраженную S-образную форму. Поскольку по ходу процесса из зоны реакции в единицу времени вытягивалось примерно одно и то же количество таза, то

можно думать, что данная зависимость полностью отражает кинетику накопления радикалов в объеме реакционного сосуда. Очевидно, что если произвести дифференцирование полученных кривых, можно получить зависимость концентрации радикалов от времени в зоне реакции. Нетрудно убедиться, что в полном соответствии с теорией цепных разветвленных процессов (³), в ходе реакции концентрация радикалов во времени растет, достигает максимума и далее падает (из-за выгорания исходных веществ). На рис. 3 приводится зависимость максимальных концентраций радикалов от температуры. За величину, пропорциональную максимальной концентрации радикалов, принимали угловой коэффициент касательной, проведенной в точке перегиба кривых накопления радикалов (рис. 2). На том же рис. 3 приводятся значения максимальных скоростей, полученные по измеренным дапным прироста давления ΔP (кривая 2).

Таким образом, в области отрицательного температурного коэффициента скорости реакции максимальная концентрация радикалов также проходит через отчетливо выраженный минимум симбатно максимальной скорости реакции. Падение максимальной концентрации радикалов с повышением температуры в области отрицательного температурного коэффициента, очевидно, связано с уменьшением скорости разветвления. Интересно отметить, что иная зависимость концентрации радикалов от температуры наблюдается на начальных участках кинетических кривых. Нетрудно видеть, что при малых временах контакта с повышением температуры концентрация радикалов растет (см. рис. 2). Такая зависимость, построенная по данным рис. 2 при временах $t_{\kappa} = 20$ сек., приводится на рис. 4. Этот факт, по-видимому, связан с тем, что в начале, когда процесс разветвления еще не протекает со значительной скоростью, образование радикалов в основном связано с реакцией зарождения цепей. Последняя непрерывно усиливается с повышением температуры.

Лаборатория физической химии Академии наук АрмССР Ереван Поступило 24 XI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ R. N. Pease, J. Am. Chem. Soc., 51, 1839 (1929); R. N. Pease, W. R. Munro, J. Am. Chem. Soc., 56, 2034 (1934). ² B. Я. Штерн, Сборн. Цепные реакции окисления углеводородов в газовой фазе, Изд. АН СССР, 1955. Механизм окисления углеводородов в газовой фазе, Изд. АН СССР, 1960. ³ Н. Н. Семенов, О некоторых проблемах химической кинстики и реакционной способности, Изд. АН СССР, 1958. ⁴ А. А. Манташян, Т. А. Гарибян и др., Тез. докл. Международн. симпозиум по свободным радикалам 26—31 июля, Новосибирск, 1967, стр. 113; Т. А. Гарибян, Г. Л. Григорян и др., ДАН, 176, № 4 (1967); Т. А. Гарибян, А. А. Манташян, ДАН, 186, № 5, 1114 (1969); А. Б. Налбандян, Вестн. АН СССР, № 11, 46 (1969). ⁵ А. А. Манташян, М. А. Бейбутян и др., ДАН, 202, № 1 (1972).