УДК 548.736

ФИЗИЧЕСКАЯ ХИМИЯ

л. о. атовмян, в. в. ткачев, т. г. шишова

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА БИЯДЕРНОГО ДИОКСОСОЕДИНЕНИЯ Мо(VI)

(Представлено академиком Н. Н. Семеновым 28 І 1972)

При взаимодействии молибдатов с пирокатехином может быть выделен ряд кристаллических соединений ($^{4-3}$). Ранее нами было исследовано строение кристаллов $K_2[MoO_2(C_6H_4O_2)_2]2H_2O$ (4). Кристаллы $NH_4[MoO_3(C_6H_4O_2)]H1/2H_2O$ получены согласно прописи (1). Приписываемый соединению стехиометрический состав (2) вызвал у нас сомнение в правильности этой формулы. Мы предположили, что анион имеет димерное строение и для проверки этого предположения провели рентгеноструктурное исследование полученных кристаллов.

Кристаллографические данные: $a=13,869\pm0,004;\ b=30,487\pm0,009;\ c=8,949\pm0,003$ Å; V=3783,8 ų; мол. вес. 560,2; пространственная

группа P_{bca} ; $D_{\text{изм}} = 1,979 \text{ г/см}^3$; $D_{\text{выч}} =$ = 1,978 г/см³, Z = 8 (молекулярный вес вычислен в предположении димерного строения). Трехмерный экспериментальный материал был получен в рентгенгониометре К Φ OP на Мо K_{α} -излучении с использованием циркониевого фильтра. Интенсивности 1970 независимых ненулевых отражений с разверток слоевых линий hk0 - hk7, 0kl, 1kl были визуально. Уточнение определены структуры проводилось м.н.к. с полной матрицей и изотропными температурными поправками. На заключительном этапе (R = 0.106) была использована $W = (a + |F_{0}| +$ схема $+b|F_{0}|^{2}$ (5) (a = 40, b = 0.003).

На рис. 1 показано строение аниона $[Mo_2O_5(C_6H_4O_2)_2]^{2-}$. Димер образуется

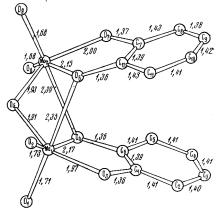


Рис. 1. Строение аниона $[MO_2O_5 \cdot (C_6H_4O_2)_2]^{2-}$

за счет сопряжения двух октаэдров через общую грань. Один атом кислорода каждого пирокатехинового цикла является общим для двух молибденовых октаэдров. Расстояние между двумя атомами молибдена в димере равно 3,13±0,01 Å. Такие расстояния обычно приписываются валентному взаимодействию между атомами металла.

В табл. 1 приведен перечень соединений, причем, если в первых двух (6, 7) наличие связи Мо—Мо не вызывает сомнения, то в трех последних такое взаимодействие отсутствует. В исследованном нами соединении каждый молибденовый октаэдр является по существу диоксосоединением. Для образования л-связей с двумя цис-расположенными концевыми атомами кислорода используются все три d-орбитали каждого атома молибдена (8). С точки зрения электронного баланса нет никаких оснований предполагать наличие связи Мо—Мо, тем более, что для соединений Мо(VI) не известно ни одного соединения, содержащего связи Мо—Мо. То же са-

мое можно отметить и для аниона $[CeMo_{12}O_{42}]^{8-}$ (*). Сопряжение фрагмента из двух октаэдров в этом анионе также происходит через общую грань. Сопряжение октаэдров в анионе $\{[OsO_2(NO_2)_2]_2O_2\}^{4-}$ (*) происходит через общее ребро. Атомы Os(VI) имеют электронную конфигуранию d^2 , поэтому и в этом случае связь Os—Os исключается. В то же время для расстояний значительно больших (соединения 1 и 2) наличие

Таблица 1 Расстояние М—М в биядерных комплексах (Å)

№№ п. п.	Соединение	Рас- стоя- ние М—М	Источ- нин
1	(C_5H_5) M_0-M_0 (C_5H_5) (C_5H_5)	3,22	(6)
2	[(CO) ₅ Mo—Mo(CO) ₅] ²	3,12	(7)
3	$[Mo_2O_5(C_6H_4O_2)]^{2-}$	3,13	
4	$[CeMo_{12}O_{42}]^{8-}$	3,13	(9)
5	$\{[OsO_2(NO_2)_2]_2O_2\}^{4-}$	3,06	(10)

валентного взаимодействия Мо—Мо не вызывает сомнения. По-видимому, расстояние между атомами металла в сложных соединениях не может служить критерием характера связи, а в некоторых случаях даже критерием наличия валентного взаимодействия.

Филиал Института химической физики Академии наук СССР Черпоголовка Моск, обл. Поступило 24 I 1972

цитированная дитература

¹ R. F. Weinland, F. Gaisser, J. Anorg. Chem., 103, 231 (1919). ² R. F. Weinland, P. Huthmann, Arch. Pharm., 262, 329 (1924). ³ R. F. Weinland, A. Babel et al., J. Anorg. Chem., 150, 177 (1925). ⁴ J. O. Атовмян, Ю. А. Соколова, В. В. Ткачев, ДАН, 195, № 6, 1355 (1970). ⁵ D. W. I. Cruichshank, Computing Methods and Phase Problem in X-ray Crystal Analysis. Glasgow, 1961, p. 45. ⁶ L. Wilson, D. P. Shoemaker, J. Chem. Phys., 27, 3, 809 (1957). ⁷ L. B. Handy, J. K. Ruff, L. F. Dahl, J. Am. Chem. Soc., 92, 25, 7312 (1970). ⁸ J. O. Атовмян, М. А. Порай-Кошин, ЖСХ, 10, 5, 853 (1969). ⁹ D. D. Dexter, I. V. Silverton, J. Am. Chem. Soc., 90, 13, 3589 (1968). ¹⁰ Л. О. Атовмян, О. А. Дьяченко, ЖСХ, 8, 1, 169 (1967).