УДК 577.153 *БИОХИМИЯ*

А. II. БРЕСТКИН, Е. В. РОЗЕНГАРТ, И. Н. СОБОЛЕВА, Н. В. ХРОМОВ-БОРИСОВ, М. Л. ИНДЕНБОМ, Л. Н. ТИХОНОВА, А. А. АБДУВАХАБОВ, К. ТОРЕМУРАТОВ

О НЕПРОДУКТИВНОМ СВЯЗЫВАНИИ СУБСТРАТОВ ХОЛИНЭСТЕРАЗЫ

(Представлено академиком Е. М. Крепсом 22 XI 1971)

Основным уравнением, описывающим зависимость скорости ферментативной реакции (v) от концентрации фермента ($[E]_0$) и субстрата ([S]), является уравнение Михаэлиса — Ментен

$$v = a_c[E]_0[S] / (K_M + [S]) = V[S] / (K_M + [S]),$$
 (1)

где a_c — активность каталитического центра фермента; V — максимальная скорость реакции, равная $a_c[E]_0$; $K_{\rm M}$ — константа Михаэлиса. Уравнению (1) удовлетворяют многие схемы ферментативного катализа, в том числе и общепринятая в настоящее время трехстадийная схема взаимодействия фермента с субстратом (1)

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_3} ES' \xrightarrow{k_3} E - P_2,$$
 (2)

где ES — комплекс Михаэлиса; ES' — ацилированный фермент; k_1 , k_{-1} , k_2 и k_3 — константы скорости соответствующих ступеней реакции; P_1 и P_2 — продукты реакции (спирт и кислота). Применительно к схеме (2) действительные значения кинетических параметров равны

$$a_{c}^{*} = k_{2}k_{3}/(k_{2} + k_{3}), \tag{3}$$

$$K_{\rm M}^* = (k_{-1} + k_2) k_3 / [k_1 (k_2 + k_3)].$$
 (4)

Результаты определения величин $K_{\rm M}$ и V для гидролиза различных субстратов под действием ацетилхолинэстеразы (КФ 3.1.1.7) и бутприлхолинэстеразы (КФ 3.1.1.8) привели к заключению, что в соответствии со схемой (2) лимитирующей стадией ферментативного процесса является не первая стадия (образование комплекса Михаэлиса), а последующие (ацилирование или деацилирование) ($^{2-5}$). Если бы лимитирующей стадией была первая, то тогда при равных концентрациях субстратов быстрее всех гидролизовался субстрат с наименьшей $K_{\rm M}$ в согласии с общим принципом: «лучшее связывание — лучший катализ». В действительности же с уменьшением $K_{\rm M}$ скорость гидролиза под действием холинэстераз во многих случаях не возрастает, а уменьшается из-за более резкого падения V ($^{3-6}$).

В согласии с этим заключением различие в скоростях холинэстеразного гидролиза субстратов, а следовательно, и специфичность холинэстераз определяется не первой, а последующими стадиями. Это противоречит представлению об определяющей роли комплементарности молекул субстрата активному центру фермента в ферментативном катализе.

Известно, что активный центр холинэстераз полифункционален (имеет по крайней мере 3 различных участка связывания). Именно этим объясняется стереоспецифичность ферментов: из 2 оптических изомеров ацетил- β -метилхолина только L-изомер гидролизуется ацетилхолинэстера-

зой, а *D*-изомер является ее обратимым ингибитором (⁷). Молекула *D*-изомера сорбируется на активном центре, но не подвергается гидролизу, так как она не способна правильно ориентироваться на нем. Вероятно, вообще субстраты отличаются друг от друга не столько константами скорости ацилирования и деацилирования, сколько своей способностью правильно ориентироваться на активной поверхности, что не учитывается схемой (2). Веским аргументом в пользу такой точки зрения является комбинированное торможение холинэстераз некоторыми фосфорорганическими ингибиторами (⁸, ⁹). Этот вид торможения складывается из необратимого фосфорилирования фермента и из обратимого угнетения, обусловленного, видимо, образованием фермент-ингибиторного комплекса с неправильной ориентацией ингибитора на активном центре холинэстеразы, благодаря чему такой комплекс не способен к дальнейшему превращению в фосфорилированный фермент.

При учете «непродуктивного связывания» субстрата схема ферментативного гидролиза в простейшем случае принимает вид

$$\begin{array}{c}
\stackrel{k_1}{\underset{K_1}{\longrightarrow}} ES \xrightarrow{k_2} ES \xrightarrow{k_3} E + P_2, \\
\downarrow \stackrel{k_1}{\underset{K_1}{\longrightarrow}} ES_B
\end{array}$$
(5)

где $K_{\rm p}$ — равновесная константа диссоциации комплекса ${\rm ES_{\rm p}}$, в котором субстрат ориентирован неправильно на активном центре фермента. Эта схема также приводит к уравнению Михаэлиса — Ментен:

$$v = \frac{\frac{k_2 k_3}{k_2 + k_3} \frac{K_b}{K_b + K_M^*} [E_0][S]}{K_M^* K_b / (K_b + K_M^*) + [S]} = \frac{a_c^* p[E]_0[S]}{K_M^* p + [S]} = \frac{a_c[E]_0[S]}{K_M + [S]} = \frac{V[S]}{K_M + [S]}, \quad (6)$$

где $K_{\rm M}^*$ и $a_{\rm c}$ — действительные величины константы Михаэлиса и активности каталитического центра, выражаемые формулами (4) и (3); $K_{\rm M}$ и $a_{\rm c}$ — те же величины, определяемые в опыте; p — коэффициент, выражающий долю продуктивного связывания субстрата от общего количества связанного субстрата:

$$p = \frac{[ES] + [ES']}{[ES] + [ES'] + [ES]_{B}} = \frac{K_b}{K_B + K_M^*}.$$
 (7)

Применительно к α -химотрипсину гипотеза о непродуктивной сорбцпи была выдвинута Ниманом (10). Недавно И. В. Березин с сотрудниками (11) вывели аналогичное уравнение, которое отличается от (6) только тем, что в пем не вычленен коэффициент p, имеющий, как будет показано ниже, существенное значение для анализа данных холинэстеразного гидролиза. Зависимость скорости реакции от концептрации субстрата не дает возможности находить p и тем более $K_{\rm M}$ и $K_{\rm B}$. Об их численном значении можно судить лишь на основании косвенных расчетов. Если $K_{\rm B} \ll K_{\rm M}^*$, то $p = K_{\rm B} / (K_{\rm B} + K_{\rm M}^*) \approx 1$, $a_{\rm c} \approx a_{\rm c}^*$ и $K_{\rm M} \approx K_{\rm M}^*$.

Если $K_{\text{в}} \ll K_{\text{M}}^*$, то $p = K_{\text{в}} / (K_{\text{в}} + K_{\text{M}}^*)^* \approx 1$, $a_c \approx a_c^*$ и $K_{\text{M}} \approx K_{\text{M}}^*$. В этом случае непродуктивное связывание отсутствует и каждая сорбированияся на активном пентре молекула субствата гипролизуется

вавшаяся на активном центре молекула субстрата гидролизуется. Если $K_{\text{B}} \ll K_{\text{M}}^*$, то $p = K_{\text{B}} / (K_{\text{B}} + K_{\text{M}}^*) = K_{\text{B}} / K_{\text{M}}^* \to 0$; $a_c = a_c^* p \to 0$. В этом случае непродуктивное связывание доминирует и такое соединение является не субстратом, а обратимым ингибитором.

Согласно современным представлениям о механизме холинэстеразного катализа (12, 13), субстраты, содержащие одинаковый ацильный остаток и обладающие близкой прочностью сложноэфирной связи, должны иметь практически равные константы скорости ацилирования и деацилирования,

а следовательно, и одинаковые величины a_c . Вероятно, отличия в скоростях их ферментативного гидролиза будут в основном связаны с различиями в величинах p. В данном случае отношение экспериментально найденных величин V для двух таких субстратов при одинаковых концентрациях фермента равно отношению величин p:

$$V_1/V_2 = a_{c(1)}/a_{c(2)} = p_1/p_2.$$
 (8)

Поскольку $K_{\mathrm{M}(1)}/K_{\mathrm{M}(2)} = K_{\mathrm{M}(1)}^* \left(p_1/K_{\mathrm{M}(2)}^*\right) p_2$, , то подставляя значение p_1/p_2 из (8) получаем отношение действительных величин константы Михаэлиса

$$K_{\text{M(1)}}^*/K_{\text{M(2)}}^* = K_{\text{M(1)}}/K_{\text{M(2)}}) (V_2/V_1).$$
 (9)

Исходя из этих теоретических позиций, мы проанализировали данные гидролиза ацетатов различных аминоспиртов под действием холинэстеразы

сыворотки крови лошади.

Субстраты. Иодметилат N-(β -ацетоксиэтил)-пиперидиния (IV). При ацилировании хлористым ацетилом N-(β -оксиэтил)-пиперидина (¹⁴) в абсолютном бензоле получали с выходом 70—75% N-(β -ацетоксиэтил)-пиперидин, который подвергали иодалкилированию без растворителя (выход 97%; т. пл. 106—108°).

Иодэтилат N- $(\bar{\beta}$ -ацетоксиэтил)-пиперидиния (II) (выход 40%; т. пл. $86-88^{\circ}$)

Найдено
$$\%$$
: С $40,83$; Н $7,04$; N $4,25$; J $38,80$ С₁₁Н₂₂NO₂J. Вычислено $\%$: С $40,37$; Н $6,78$; N $4,28$; J $38,78$

Иодметилат ацетиллупининия (V). При взаимодействии лупинина с хлористым ацетилом в присутствии триэтиламина получали ацетиллупинин (15) (выход 70%; т. кип. $80^{\circ}/0.5$ мм; $n_D^{20}/0.4860$)

который подвергали иодметилированию в абсолютном эфире (выход 62,5%; т. пл. $100-102^\circ$).

Фермент. Холинэстераза сыворотки крови лошади (КФ 3.1.1.8) производства Института им. И. И. Мечникова (Москва), активность 7,2 ед.

Скорость ферментативного гидролиза субстратов измеряли методом потенинометрического титрования (4). Кинетические параметры ($K_{\rm M}$ ц $a_{\rm c}$) определяли либо графическим методом (4), либо рассчитывали аналитически (16).

Все исследованные нами субстраты (табл. 1) являются ацетатами, и, согласно схемам (5) и (2), они должны иметь одинаковую константу скорости деацетилирования (k_3). Кроме того, исходя из их строения, эти соединения должны обладать практически одинаковой прочностью сложно-эфирной связи, что подтверждается близкими значениями скоростей спонтанного гидролиза (при рН 7,5). Следовательно, эти субстраты можно рассматривать как равные по силе ацетилирующие агенты, т. е. величины k_2 для них должны быть одинаковы. Тогда, как указывалось выше, к этим субстратам применимы уравнения (8) и (9).

Из табл. 1 видно, что все исследованные ацетаты имели по сравнению с ацетилхолином более низкие величины $K_{\rm M}$ и $a_{\rm c}$. Чтобы оценить порядок величин $K_{\rm M}^*$ и $K_{\rm B}$ для изученных соединений, допускаем, что для ацетилхолина $p=1(K_{\rm M}=K_{\rm M}^*)$, и, тем самым, пренебрегаем его непродуктивной сорбцией. Тогда из уравнений (8), (9) и (7) можно рассчитать для

Кинетические параметры гидролиза ацетатов различного строения под действием холинэстеразы сыворотки крови лошади (25°, рН 7,5)

№ соеди- нения	Формула	$K_{\mathbf{M}}, M$	a _с , мин−1	p	а _с *, мин-1	K _M *, M	K _B , M
I	(CH ₃) ₃ NCH ₂ CH ₂ OC(O)CH ₃	1.10-8(5)	6-104(4)	1	6 · 104	1.10-3	_
II	CH ₂ —CH ₂ N—CH ₂ CH ₂ OC(O)CH ₃ CH ₃ —CH ₂ C ₂ H ₅	1,8-10-4	2.104	0,30	0,6.104	5,5.10-4	2,8.10-
III	C ₆ H ₅ (CH ₃) ₂ NCH ₂ CH ₂ OC(O)CH ₃	3-10-4(5)	1 - 104	0,15	0,15-104	1,9-10-3	3,7.10-4
IV	CH ₂ —CH ₂ N—CH ₂ CH ₂ OC(O)CH ₃ CH ₂ —CH ₂ CH ₃	3,7·10-5	3-103	0,05	0,015.104	7,4-10-4	3,9.10-
•	CH ₂ —CH ₂ CH ₂ CH ₃ — CH ₃ — CH						
v	CH ₂ CH—CH ₂ OC(O)CH ₃	1,5.10-	2.103	0,04	0,008-104	4,2.10-4	1,6.10-

каждого из ацетатов величины $K_{\rm M}^*$, $K_{\rm B}$, $a_{\rm c}^*$ и p (табл. 1). Из приведенных в табл. 1 данных следует, что и величина действительной константы Михаэлиса ($K_{\rm M}^*$) сама по себе еще не дает возможности делать заключение о каталитической активности фермента в реакции с данным субстратом. Так, при холинэстеразном гидролизе иодметилата ацетиллупининия (V) величина $K_{\rm M}^*$ в 2,5 раза ниже, чем для ацетилхолина. Тем не менее ацетилхолин гидролизуется в 25 раз быстрее, поскольку для ацетиллупининия процент продуктивной сорбции (4% от ацетилхолина) мал.

Таким образом скорость холинэстеразного гидролиза исследованных субстратов находится в прямой зависимости от доли продуктивного связывания (p), величина которой зависит от соотношения $K_{\rm M}^*$ и $K_{\rm B}$.

Институт эволюционной физиологии и биохимии им. И. М. Сеченова Академии наук СССР Поступило 28 X 1971

Институт экспериментальной медицины Академии медицинских наук СССР Ленинград

Ташкентский государственный университет им. В. И. Ленина

цитированная литература

¹ М. Диксон, Э. Уэбб, Ферменты, М., 1961, стр. 102. ² І. В. Wilson, І. Е. Савів, Ј. Ат. Сћет. Soc., 78, 202 (1956). ³ В. А. Яковлев, Р. С. Агабекян, Биохимия, 32, 293 (1967). ⁴ В. А. Яковлев, Кинетика ферментативного катализа, «Наука», 1965. ⁵ А. П. Бресткин, И. Л. Брик, Н. Е. Теплов, Биохимия, 33, 1059 (1968). ⁶ D. І. Есовісћен, Ј. Ізгаеl, Canad. J. Biochem., 45, 1099 (1967). ² А. Н. Вескеtt, N. J. Harper, J. W. Clitherow, J. Pharm. Pharmacol., 15, 362 (1963). ³ W. N. Aldridge, E. Reiner, Biochem. J., 115, 147 (1969). ³ А. П. Бресткин, И. Л. Брик и др., ДАН, 200, 103 (1971). ¹⁰ Н. Т. Нианд, С. Niemann, J. Ат. Сћет. Soc., 74, 4634 (1952). ¹¹ И. В. Березин, Н. Ф. Казанская, А. А. Клесов, Биохимия, 36, 227 (1971). ¹² А. Р. Вгезткіп, Е. V. Rozengart, Nature, 205, 388 (1965). ¹³ А. П. Бресткин, И. Л. Брик и др., Биохимия, 35, 382 (1970). ¹⁴ А. Ladenburg, Вег., 14, 1877 (1881). ¹⁵ К. Торемуратов, А. А. Абдувахабов и др., Изв. АН СССР, сер. хим., 1972, № 4. ¹6 А. R. Brestkin, E. V. Rozengart et al., Biochim. biophys. acta, 191, 155 (1969).