УДК 541.183

ФИЗИЧЕСКАЯ ХИМИЯ

Академик М. М. ДУБИНИН, В. А. БАКАЕВ, О. КАДЛЕЦ

ОСНОВНЫЕ СВОЙСТВА УРАВНЕНИЯ АДСОРБЦИИ ТЕОРИИ ОБЪЕМНОГО ЗАПОЛНЕНИЯ МИКРОПОР

В теории объемного заполнения микропор (1 , 2) уравнение изотермы адсорбции имеет вид

 $a = a_0 \exp[-(A/E)^n],$ (1)

где a — величина адсорбции при равновесном давлении p или летучести f, a_0 — предельная адсорбция, E — характеристическая энергия адсорбции, n — постоянный параметр и A — дифференциальная мольная работа адсорбции

 $A = RT \ln f_s / f \sim RT \ln p_s / p, \tag{2}$

где p_s — давление (f_s — летучесть) насыщенного пара при температуре T. Задачей настоящего сообщения является анализ свойств уравнения изотермы (1) и, в частности, вне его связи с конкретным механизмом адсорбции.

1. Обычно предполагают, что изотермы адсорбции газов и паров на микропористых адсорбентах выражаются выпуклыми по отношению к оси давлений кривыми. В этом случае наклоны кривых K = da/dp монотонно уменьшаются с возрастанием равновесных давлений. Качественно аналогичным образом уменьшаются наклоны прямых $\overline{K} = a/p$, соединяющих начало координат и точки (a, p) изотермы. В этом легко убедиться из выражений для K и \overline{K} простейших уравнений выпуклых изотерм адсорбции Ленгмюра или Фрейндлиха.

В работах ($^{3-5}$) было экспериментально показано, что изотермы адсорбции для некоторых изученных газов и паров имеют точки перегиба в начальных областях равновесных давлений, т. е. являются S-образными. Если уравнение изотермы адсорбции a=f(p) имеет точку перегиба, то его дифференциальная форма $da/dp=\varphi(p)$ должна характеризоваться экстремумом функции φ . Равновесное давление p для точки экстремума функции определится из условия $d^2a/dp^2=0$. Согласно (1) с учетом (2), имеем

$$K = da/dp = (nRT/E^n)aA^{n-1}/p.$$
(3)

После дифференцирования (3) и необходимых преобразований получаем

$$\frac{d^{2}a}{dp^{2}} = \frac{nRT}{E^{n}} \frac{a A^{n-2}}{p^{2}} \left[\frac{nRT}{E^{n}} A^{n} - A - RT (n-1) \right]. \tag{4}$$

Условие экстремума функции выразится из (4)

$$F = (nRT/E^n)A_0^n - A_0 - RT(n-1) = 0,$$
 (5)

где величина A_0 в соответствии с (2) отвечает p, т. е. точке экстремума функции ϕ . Следует заметить, что уравнение (5) n-ой степени имеет только один действительный корень A_0 (т. е. одно p_0), имеющий физический смысл. Таким образом, изотерма, выражаемая уравнением (1), при n > 1 обладает точкой перегиба и является S-образной. При n = 1 уравнение (1) превращается в уравнение Фрейндлиха, для которого точка перегиба отсутствует.

Значения корня уравнения (5) при различных величинах E и T и целочисленных значениях $n \geqslant 2$ были рассчитаны на БЭСМ-4. Эти решения в

безразмерной форме $(k=E/RT,\theta=a/a_0\text{ и }h_0=p_0/p_s\text{ или }p_0/f_s)$ представлены на рис. 1 (цифры у кривых соответствуют значениям n). Пользуясь этим графиком, легко приближенно оценить a по θ и p_0 по A_0 для точки перегиба изотермы и уточнить значения A_0 по уравнению (5). В работе (3) приведены табличные данные для изотерм адсорбции неопентана на цеолите NaX для температур $140-300^\circ$ и отмечен их S-образный характер. Оценив по (1) приближенное значение n для изотермы при 160° , при-

нимаем n=3. Экспериментальные точки изотермы вполне удовлетворительно соответствуют на графике липейной форме уравнения (1) в интервале заполнений $\theta = 0.02 - 0.35$. По параметрам прямой на $a_0 = 145.9$ $M\Gamma/\Gamma$ ходим и = 4835 кал/моль. Пользуясь графиком, при $k \approx 5.6$ оцениваем $h_0 = 1.3 \cdot 10^{-4}$ и для $f_s = 15600$ мм рт. ст. находим $p_0 = 2.8$ мм. ${f y}$ точняем это значение подбором $A_{\scriptscriptstyle 0}$ для $F \approx 0$ в уравнении (5). Получаем $A_0 =$ = 7350 кал/моль, отвечающую = 3,03 мм. В первой графе табл. 1 приведены экспериментальные величины \overline{K} для различных р. В отличие от выпуклых изотерм, опытные данные табл. 1 указывают

на первоначальный рост значений \overline{K} в области оцененной величины p_0 с последующим их уменьшением. Этот эффект является следствием S-образного характера изотермы адсорбции и наличия точки перегиба в этой области.

Аналогичные результаты для других адсорбционных систем бензол — NaX, n-гексан — NaX, изученных нами, и CH_4 — цеолит L по опытам (°), для которых наличие точек перегиба изотерм еще не отмечалось, приведены в табл. 1. Для них всех рост \overline{K} наблюдается в областях изотерм, включающих вычисленные по уравнениям (5) и (2) величины p_0 . Даже для практически линейной изотермы адсорбции метана на цеолите L ясно заметен рост величин \overline{K} в области давлений от ~ 60 до 100 мм ($p_0 = 55$ мм). Таким образом, можно высказать предположение, что описанный эффект имеет общее значение для изотерм адсорбции газов и паров на цеолитах.

Вопрос о характере изотерм для адсорбции, обязапной только дисперсионному взаимодействию, остается открытым, так как для изученных нами адсорбционных равновесий на активных углях даже для наиболее вы-

Таблица 1

E = 4835 кал/моль		E = 8628 кал/моль		$\begin{array}{c} \text{$n$-$C_6H_{14}$} & \text{$Na$X} \\ 350^{\circ} \\ f_8 = 43600 \text{ mm} \\ n = 4, \ a_0 = 128,3 \text{ mr/r} \\ E = 6550 \text{ kail/modb} \\ p_9 = 60,3, \ p_1 = 131 \text{ mm} \end{array}$		E = 6550 кал/моль		$\begin{array}{c} {\rm CH_4} & {\rm L} \\ -30^{\circ} {\rm C} \\ f_8 = 62000 \; {\rm mm} \\ n = 3, \; a_0 = 31,1 \; {\rm mr/r} \\ E = 2350 \; {\rm kan/modb} \\ p_0 = 55,3, \; p_1 = 126 \; {\rm mm} \end{array}$	
<i>p</i> , мм	\overline{K} , MF/ Γ ·MM	p, mm	\overline{K} , Mr'r·mm	p, MM	\overline{K} , MF/ \mathbf{r} ·MM	p, MM	\overline{K} , Mr/r·mm	р, мм	Ж·10², мг/г·мм
$\begin{array}{c} 0,52\\ 1,55\\ 2,53\\ 4,98\\ 7,38\\ 14,6\\ 27,7 \end{array}$	1,39 1,40 1,43 1,45 1,47 1,49 1,30	2,50 3,98 6,51 10,0 15,9 25,1 39,8	1,08 1,66 1,84 1,85 1,70 1,56 1,34	23,4 31,8 38,5 65,5 69,7	0,265 0,302 0,354 0,302 0,288	3,24 3,59 3,94 4,60 5,16 6,76 14,4	2,73 2,95 3,19 3,08 3,04 2,88 2,56	60 80 100 120 140 180	3,10 3,22 3,29 3,16 3,16 3,14

соких температур равновесные давления для первых точек изотерм на: один-два порядка превышали вычисленные давления p_0 .

2. Известно, что экспериментальные изотермы адсорбции газов и паров на микропористых адсорбентах при относительно высоких температурах практически становятся линейными. Рассмотрим условия, при которых изотерма адсорбции (1) с достаточно высокой точностью, например, в пределах ошибок опытов, может быть аппроксимирована уравнением

$$a = Kp. (6)$$

Подставляя в (6) a из (1) и p из (2), получим

$$K = \frac{a_0}{f_s} \exp\left[\frac{A}{RT} - \left(\frac{A}{E}\right)^n\right]. \tag{7}$$

Для изотерм адсорбции T, a, f_s , E и n — постоянные величины. Однако по (2) A является функцией p и практическое постоянство K будет определяться постоянством экспоненты уравнения (7), которую мы будем обозначать через δ . Условие постоянства δ выразится как $d\delta/dp=0$, или вразвернутом виде

$$\frac{RT}{p} \left(\frac{1}{RT} - \frac{nA_1^{n-1}}{E^n} \right) = 0. \tag{8}$$

По существу уравнение (8) выражает условие экстремума функции δ . Из (8) находим A_1 и по (2) p_1 для точки экстремума функции δ

$$A_1 = (E^n / nRT)^{1/(n-1)}, (9)$$

или в связи с (2)

$$\lg p_1 = \lg f_s - 0.434 \frac{E}{RT} \left(\frac{E}{nRT} \right)^{1/(n-1)}. \tag{10}$$

Параметры уравнения изотермы адсорбции неопентана на NaX при 160° приведены в табл. 1. Пользуясь ими, получаем по (9) $A_1=6618$ кал/моль по (10) $p_1=7,11$ мм. Точка p_1 является средней для области практически линейной изотермы адсорбции. В интервале p от 3,63 до 14,58 мм $\delta=5,10\pm0,04$. Этому значению δ ($\pm0,78\%$) отвечает по (7) величина $K=1,54\pm0,06$, изменяющаяся в указанном интервале p на $\pm3,97\%$. Заметим, что в том же интервале p экспериментальные значения \overline{K} изменяются в пределах от 1,391 до 1,487, т. е. на $\pm3,5\%$.

Подставляя в уравнение (7) значение A_1 из (9), получаем формулу для непосредственной оценки K по параметрам уравнения адсорбции (1)

$$K = \frac{a_0}{f_s} \exp\left[\left(n - 1\right) \frac{E}{nRT} \left(\frac{E}{nRT}\right)^{1/(n-1)}\right]. \tag{11}$$

Подставляя в (11) значения параметров, приведенных в табл. 1, находим K=1,578 мг/г·мм, а полученная из графика изотермы экспериментальная величина K=1,435 мг/г·мм. Расхождение на 10% объясняется расчетом для точки экстремума функции δ , т. е. для $\delta_0=5,128$. Средняя экспериментальная величина в рассматриваемом интервале давлений $\delta=5,10$.

Адсорбционные равновесия метана на цеолите L в интервале температур от -117 до -30° находятся в хорошем соответствии с теорией объемного заполнения микропор (см. рис. 3 работы (¹)). Параметры уравнения адсорбции (1) n=3, $a_{\scriptscriptstyle 0}{}^{\scriptscriptstyle 0}=33,5$ мг/г E=2350 кал/моль были определены по изотерме адсорбции при $-80,6^\circ$. Коэффициент объемного расширения метана при предельной адсорбции составлял $\alpha=1,515\cdot 10^{-3}$ град $^{-1}$. Вычисленные параметры уравнения изотермы адсорбции при -30° приведены в табл. 1. Находящиеся в той же графе экспериментальные значения \overline{K} дают представление о линейном характере изотермы адсорбции поч-

ти во всем изученном интервале давлений. По уравнению (10) находим для средней точки вычисленного интервала практически линейной зависимости p=127 мм и по формуле (11) $K=3,12\cdot 10^{-2}$ мг/г·мм = $4,36\cdot \cdot 10^{-2}$ см³/г·мм. По проведенной на графике рис. 1 статьи (6) прямой опытное значение $K=4,40\cdot 10^{-2}$ см³/г·мм.

Формулы (10) и (11) показывают зависимость положения области практически линейного участка изотермы по его средней точке p_1 и наклона прямой K от параметров уравнения адсорбции (n, a_0, E) и температуры T. Вычисленные величины p_1 приведены в табл. 1. Интервалы равновесных давлений для приближенно линейных участков изотерм существенно уменьшаются с понижением температуры.

Институт физической химии Академии наук СССР Москва Поступило 18 II 1972

Институт физической химии Академии наук ЧССР Прага

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. М. Дубинин, В. А. Астахов, Изв. АН СССР, сер. хим., 1971, 5, 11, 17. ² Б. П. Беринг, В. А. Гордеева и др., Изв. АН СССР, сер. хим., 1971, 22. ³ О. М. Джигит, А. В. Киселев, Л. Г. Рябухина, ЖФХ, 44, 1790 (1970). ⁴ В. Босачек, Цеолиты, их синтез, свойства и применение, «Наука», 1965, стр. 103. ⁵ В. G. Aristov, V. Bosacek, A. V. Kiselev, Trans. Farad. Soc., 63, 2057 (1967). ⁶ R. M. Barrer, J. A. Lee, Surface Sci., 12, 341 (1968).