УДК 541.183

ФИЗИЧЕСКАЯ ХИМИЯ

Академик М. М. ДУБИНИН, В. А. БАКАЕВ, О. КАДЛЕЦ

ОСНОВНЫЕ СВОЙСТВА УРАВНЕНИЯ АДСОРБЦИИ ТЕОРИИ ОБЪЕМНОГО ЗАПОЛНЕНИЯ МИКРОПОР

В теории объемного заполнения микропор (¹, ²) уравнение изотермы адсорбции имеет вид

$$a = a_0 \exp[-(A / E)^n],$$
 (1)

где a — величина адсорбции при равновесном давлении p или летучести f, a_0 — предельная адсорбция, E — характеристическая энергия адсорбции, n — постоянный параметр и A — дифференциальная мольная работа адсорбции

$$A = RT \ln f_s / f \sim RT \ln p_s / p, \qquad (2)$$

где p_s — давление (f_s — летучесть) насыщенного пара при температуре T. Задачей настоящего сообщения является анализ свойств уравнения изотермы (1) и, в частности, вне его связи с конкретным механизмом адсорбции.

1. Обычно предполагают, что изотермы адсорбции газов и паров на микропористых адсорбентах выражаются выпуклыми по отношению к оси давлений кривыми. В этом случае наклоны кривых K = da/dp монотонно уменьшаются с возрастанием равновесных давлений. Качественно аналогичным образом уменьшаются наклоны прямых $\overline{K} = a/p$, соединяющих начало координат и точки (a, p) изотермы. В этом легко убедиться из выражений для K и \overline{K} простейших уравнений выпуклых изотерм адсорбции Ленгмюра или Фрейндлиха.

В работах (³⁻⁵) было экспериментально показано, что изотермы адсорбции для некоторых изученных газов и паров имеют точки перегиба в начальных областях равновесных давлений, т. е. являются *S*-образными. Если уравнение изотермы адсорбции a = f(p) имеет точку перегиба, то его дифференциальная форма $da/dp = \varphi(p)$ должна характеризоваться экстремумом функции φ . Равновесное давление *p* для точки экстремума функции определится из условия $d^2a/dp^2 = 0$. Согласно (1) с учетом (2), имеем

$$K = da / dp = (nRT / E^n) a A^{n-1} / p.$$
(3)

После дифференцирования (3) и необходимых преобразований получаем

$$\frac{d^{2}a}{dp^{2}} = \frac{nRT}{E^{n}} \frac{aA^{n-2}}{p^{2}} \left[\frac{nRT}{E^{n}} A^{n} - A - RT(n-1) \right].$$
(4)

Условие экстремума функции выразится из (4)

$$F = (nRT/E^{n}) A_{0}^{n} - A_{0} - RT (n-1) = 0,$$
(5)

где величина A_0 в соответствии с (2) отвечает p, т. е. точке экстремума функции φ . Следует заметить, что уравнение (5) *n*-ой степени имеет только один действительный корень A_0 (т. е. одно p_0), имеющий физический смысл. Таким образом, изотерма, выражаемая уравнением (1), при n > 1обладает точкой перегиба и является S-образной. При n = 1 уравнение (1) превращается в уравнение Фрейндлиха, для которого точка перегиба отсутствует.

Значения корня уравнения (5) при различных величинах E и T и целочисленных значениях $n \ge 2$ были рассчитаны на БЭСМ-4. Эти решения в безразмерной форме (k = E / RT, $\theta = a / a_0$ и $h_0 = p_0 / p_s$ или p_0 / f_s) представлены на рис. 1 (цифры у кривых соответствуют значениям n). Пользуясь этим графиком, легко приближенно оценить a по θ п p_0 по A_0 для точки перегиба изотермы и уточнить значения A_0 по уравнению (5). В работе (³) приведены табличные данные для изотерм адсорбции неопентана на цеолите NaX для температур 140—300° и отмечен их S-образный характер. Оценив по (¹) приближенное значение n для изотермы при 160°, при-

нимаем n = 3. Экспериментальные точки изотермы вполне удовлетворительно соответствуют на графике липейной форме уравнения (1) в интервале заполнений θ = 0,02-0,35. По параметрам прямой на $a_0 = 145.9$ мг/г ходим и E == 4835 кал/моль. Пользуясь графиком, при $k \approx 5.6$ оцениваем $h_0 = 1.3 \cdot 10^{-4}$ и для $f_s = 15600$ мм рт. ст. находим $p_0 = 2.8$ мм. Уточняем это значение подбором А, для $F \approx 0$ в уравнении (5). Получаем $A_0 =$ = 7350 кал/моль, отвечающую $p_0 =$ = 3,03 мм. В первой графе табл. 1 приведены экспериментальные величины \overline{K} лля различных р. В отличие от выпуклых изотерм, опытные данные табл. 1 указывают

на первоначальный рост значений \overline{K} в области оцененной величины p_0 с последующим их уменьшением. Этот эффект является следствием S-образного характера изотермы адсорбции и наличия точки перегиба в этой области.

Анэлогичные результаты для других адсорбционных систем бензол — NaX, *н*-гексан — NaX, изученных нами, и CH₄ — цеолит L по опытам (⁶), для которых наличие точек перегиба изотерм еще не отмечалось, приведены в табл. 1. Для них всех рост \overline{K} наблюдается в областях изотерм, включающих вычисленные по уравнениям (5) и (2) величины p_0 . Даже для практически линейной изотермы адсорбции метана на цеолите L ясно заметен рост величин \overline{K} в области давлений от ~ 60 до 100 мм ($p_0 = 55$ мм). Таким образом, можно высказать предположение, что описанный эффект имеет общее значение для изотерм адсорбции газов и паров на цеолитах.

Вопрос о характере изотерм для адсорбции, обязапной только дисперсионному взаимодействию, остается открытым, так как для изученных нами адсорбционных равновесий на активных углях даже для наиболее вы-

Таблица 1

Heo-C ₆ H ₁₂ NaX 160° $f_{\rm S} = 15600$ MM $n = 3, a_0 = 145,9$ MT/P E = 4835 Ra.1/MOID $p_0 = 3,1, p_1 = 7,1$ MM		$\begin{array}{c} {} C_{6}H_{6} & {}_{350^{\circ}} \\ {}_{350^{\circ}} NaX \\ f_{s} = 40500 \text{ mm} \\ n = 4, a_{0} = 141,6 \text{ mr/r} \\ E = 8628 \text{ kal/Mollb} \\ p_{0} = 4,0, p_{1} = 9,2 \text{ mm} \end{array}$		$\begin{array}{c} \text{H-C}_{6}\text{H}_{14} & \text{NaX} \\ 350^{\circ} \\ f_{8} = 43600 \text{ MM} \\ n = 4, \ a_{0} = 128,3 \text{ MT/P} \\ E = 6550 \text{ RaJ/MOJL} \\ p_{9} = 60,3, \ p_{1} = 131 \text{ MM} \end{array}$		$\begin{array}{c} n\text{-}C_6\text{H}_{18} & \text{NaX} \\ 240^\circ \\ f_8 = 15600 \text{ MM} \\ n = 4, a_0 = 148.1 \text{ MC/P} \\ E = 6550 \text{ KaJ/MO.Ib} \\ p_7 = 3,7, p_1 = 8,5 \text{ MM} \end{array}$		$\begin{array}{c} \mathbf{CH_4} & \mathbf{L} \\ -30^{\circ} \mathbf{C} \\ f_{s} = 62000 \text{ mm} \\ n = 3, a_0 = 31,1 \text{ mp/p} \\ E = 2350 \text{ kai/mojb} \\ p_0 = 55,3, p_1 = 126 \text{ mm} \end{array}$	
р, мм	$\overline{K}, \\ \mathbf{M}\Gamma / \Gamma \cdot \mathbf{M}\mathbf{M}$	р, мм	<u>К,</u> мг'г• м м	р, мм	$\overline{K}, \\ \mathbf{MF/F} \cdot \mathbf{MM}$	p, MM	<u>К,</u> мг/г · мм	р, мм	<i>К</i> •10 ² , мг/г∙мм
$0,52 \\ 1,55 \\ 2,53 \\ 4,98 \\ 7,38 \\ 14,6 \\ 27,7$	1,391,401,431,451,471,491,30	2,50 3,98 6,51 10,0 15,9 25,1 39,8	$1,08\\1,66\\1,84\\1,85\\1,70\\1,56\\1,34$	23,4 31,8 38,5 65,5 69,7	$\begin{array}{c} 0,265\\ 0,302\\ 0,354\\ 0,302\\ 0,288\end{array}$	3,24 3,59 3,94 4,60 5,16 6,76 14,4	2,73 2,95 3,19 3,08 3,04 2,88 2,56	60 80 100 120 140 180	3,10 3,22 3,29 3,16 3,16 3,16 3,14

соких температур равновесные давления для первых точек изотерм на: один-два порядка превышали вычисленные давления p_0 .

2. Известно, что экспериментальные изотермы адсорбции газов и паров на микропористых адсорбентах при относительно высоких температурах практически становятся линейными. Рассмотрим условия, при которых изотерма адсорбции (1) с достаточно высокой точностью, например, в пределах ошибок опытов, может быть аппроксимирована уравнением

$$a = Kp. \tag{6}$$

Подставляя в (6) a из (1) и p из (2), получим

$$K = \frac{a_0}{f_s} \exp\left[\frac{A}{RT} - \left(\frac{A}{E}\right)^n\right].$$
 (7)

Для изотерм адсорбции T, a, f_s , E и n — постоянные величины. Однако по (2) A является функцией p и практическое постоянство K будет определяться постоянством экспоненты уравнения (7), которую мы будем обозначать через δ . Условие постоянства δ выразится как $d\delta/dp = 0$, или в развернутом виде

$$\frac{RT}{p} \left(\frac{4}{RT} - \frac{nA_1^{n-1}}{E^n} \right) = 0.$$
(8)

По существу уравнение (8) выражает условие экстремума функции б. Из (8) находим A₁ и по (2) p₁ для точки экстремума функции б

$$A_{1} = (E^{n} / nRT)^{1/(n-1)}, \qquad (9)$$

или в связи с (2)

$$\lg p_1 = \lg f_s - 0.434 \frac{E}{RT} \left(\frac{E}{nRT}\right)^{1/(n-1)}.$$
 (10)

Параметры уравнения изотермы адсорбции неопентана на NaX при 160° приведены в табл. 1. Пользуясь ими, получаем по (9) $A_1 = 6618$ кал/моль по (10) $p_1 = 7,11$ мм. Точка p_1 является средней для области практически линейной изотермы адсорбции. В интервале p от 3,63 до 14,58 мм $\delta = 5,10 \pm 0,04$. Этому значению δ ($\pm 0,78$ %) отвечает по (7) величина $K = 1,54 \pm 0,06$, изменяющаяся в указанном интервале p на $\pm 3,97$ %. Заметим, что в том же интервале p экспериментальные значения \overline{K} изменяются в пределах от 1,391 до 1,487, т. е. на $\pm 3,5$ %.

Подставляя в уравнение (7) значение A_1 из (9), получаем формулу для непосредственной оценки K по параметрам уравнения адсорбции (1)

$$K = \frac{a_0}{f_s} \exp\left[\left(n-1\right) \frac{E}{nRT} \left(\frac{E}{nRT}\right)^{1/(n-1)}\right].$$
(11)

Подставляя в (11) значения параметров, приведенных в табл. 1, находим K = 1,578 мг/г·мм, а полученная из графика изотермы экспериментальная величина K = 1,435 мг/г·мм. Расхождение на 10% объясняется расчетом для точки экстремума функции δ , т. е. для $\delta_0 = 5,128$. Средняя экспериментальная величина в рассматриваемом интервале давлений $\delta = 5,10$.

Адсорбционные равновесия метана на цеолите L в интервале температур от -117 до -30° находятся в хорошем соответствии с теорией объемного заполнения микропор (см. рис. 3 работы (¹)). Параметры уравнения адсорбции (1) n = 3, $a_0^{\circ} = 33,5$ мг/г E = 2350 кал/моль были определены по изотерме адсорбции при $-80,6^{\circ}$. Коэффициент объемного расширения метана при предельной адсорбции составлял $\alpha = 1,515 \cdot 10^{-3}$ град⁻¹. Вычисленные параметры уравнения изотермы адсорбции при -30° приведены в табл. 1. Находящиеся в той же графе экспериментальные значения \overline{K} дают представление о линейном характере изотермы адсорбции поч-

ти во всем изученном интервале давлений. По уравнению (10) находим для средней точки вычисленного интервала практически линейной зависимости p = 127 мм и по формуле (11) $K = 3,12 \cdot 10^{-2}$ мг/г·мм = 4,36 $\cdot 10^{-2}$ см³/г·мм. По проведенной на графике рис. 1 статьи (⁶) прямой опытное значение $K = 4,40 \cdot 10^{-2}$ см³/г·мм.

Формулы (10) и (11) показывают зависимость положения области практически линейного участка изотермы по его средней точке p_1 и наклона прямой K от параметров уравнения адсорбции (n, a_0, E) и температуры T. Вычисленные величины p_1 приведены в табл. 1. Интервалы равновесных давлений для приближенно линейных участков изотерм существенно уменьшаются с понижением температуры.

Институт физической химпи Академии наук СССР Москва Поступило 18 II 1972

Институт физической химии Академий наук ЧССР Прага

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. М. Дубинин, В. А. Астахов, Изв. АН СССР, сер. хим., 1971, 5, 11, 17. ² Б. П. Беринг, В. А. Гордеева и др., Изв. АН СССР, сер. хим., 1971, 22. ³ О. М. Джигит, А. В. Киселев, Л. Г. Рябухина, ЖФХ, 44, 1790 (1970). ⁴ В. Босачек, Цеолиты, их синтез, свойства и применение, «Наука», 1965, стр. 103. ⁵ В. G. Aristov, V. Bosacek, A. V. Kiselev, Trans. Farad. Soc., 63, 2057 (1967). ⁶ R. M. Barrer, J. A. Lee, Surface Sci., 12, 341 (1968).