УДК 552.18

ПЕТРОГРАФИЯ

в. И. КИЦУЛ, В. И. БЕРЕЗКИН

НОВЫЙ ВАРИАНТ ДИАГРАММЫ $P_s - \mu_{H_{2}O}$ ДЛЯ БЕДНЫХ КАЛЬЦИЕМ ОРТОКЛАЗ- И МУСКОВИТСОДЕРЖАЩИХ ВЫСОКОГЛИНОЗЕМИСТЫХ МЕТАМОРФИЧЕСКИХ ПОРОД С ИЗБЫТКОМ SiO₂

(Представлено академиком Д. С. Коржинским 19 IV 1971)

Диаграммы типа $P_s - \mu_{H_{2}O}$ (давление на твердые фазы — химический потенциал воды) (¹⁻⁶) введены А. А. Маракушевым на основании термодинамического потенциала и теории экстремальных состояний Д. С. Коржинского для анализа зависимости состава минералов от изменений μ_{H_2O} (температуры) и давления P (глубинности) в парагенезисах с числом фаз, равным или большим числа ипертных виртуальных компонентов.

В соответствии с методикой (¹, ²), для построения диаграмм $P_s - \mu_{\rm H_2O}$ необходимы данные по молекулярным объемам и составам сосуществующих минералов, а также знание эмпирических закономерностей ассоциаций минералов в горных породах. По мере уточнения последних и накопления повых минералого-петрографических данных, естественно, должны уточняться диаграммы $P_s - \mu_{\rm H_sO}$ (²).

Авторами настоящей статьи на основании обобщения известных в литературе до 1971 г. и полученных ими при изучении метаморфических пород эпидот-амфиболитовой, амфиболитовой и гранулитовой фаций Алданского щита и Анабарского массива новых химико-аналитических данных были уточнены корреляционные диаграммы железистости сосуществующих минералов (рис. 1). Молекулярные объемы для минералов постоянного состава (Mu, Or, Q, And, Sil, Ky) взяты из (7); для минералов переменного состава молекулярные объемы для Gr, Hy, Sta определялись путем иптерполяции их значений для конечных членов (7-11), а для Cor и Ві рассчитывались с использованием, кроме своих, также литературных данных (⁷, ¹²⁻¹⁸), в результате чего получены следующие значения для конечных членов: Cor 233 и 238, Bi 148 и 153,5 см³/моль. Составы минералов и их молекулярные объемы, принятые нами в понвариантных парагенезисах, указаны в табл. 1, причем нонвариантный парагенезис III взят в соответствии с реальными составами минералов в аналогичных ассоциациях в образцах горных пород Сутамского района Алданского щита и Анабарского массива, данные о которых раньше отсутствовали.

На основании указанных данных нами был рассчитан новый вариант диаграммы $P_s - \mu_{\rm Ho}$ для бедных кальцием высокоглиноземистых пород (рис. 2). Впервые диаграммы $P_s - \mu_{H_sO}$ для бедных кальцием ортоклази мусковитсодержащих высокоглиноземистых пород с избытком SiO₂ были рассчитаны А. А. Маракушевым (¹, ²) и затем С. П. Кориковским (¹⁹) на основании обобщенных корреляционных диаграмм. Однако специальные исследования (¹⁸) показали существенное влияние температуры на распределение изоморфных компонентов в сосуществующих минералах. Особенно важно учитывать влияние температуры на распределение компонентов в парагенезисах, устойчивых в широком температурном интервале, которое наиболее заметно сказывается на соотношении железистости минеральных пар с участием граната: Gr — Bi и Gr — Cor, где для каждой фации (субфации) намечается своя корреляционная кривая. Как видно на рис. 1, с переходом OT более высокотемпературых (гранулито-

Рис. 1. Корреляция общей железистости сосуществующих минералов из бедных кальцием высокоглиноземистых метаморфических пород. I для гранулитовой, II — для амфиболитовой, III для эпидот-амфиболитовой фации. В каждой коррелируемой паре сосуществующих минералов символ более железистого из них стоит впереди

вая фация) к более низкотемпературным (амфиболитовая и эпидот-амфиболитовая фации) метаморфическим породам в них в ассоциации с одним и тем же по железистости гранатом сосуществуют все более магнезиальные биотиты и кордиериты. Поэтому при расчете минеральравновесий значения ных железистости минералов снипо корреляционной мались кривой той фации (субфации), в пределах которой они рассчитывались. При этом в качестве границы между эпицот-амфиболитовой и амфиболитовой фациями принята линия моновариантного рав- $Sta + Mu + Q \Rightarrow$ новесия \Rightarrow Gr + Bi + And (Sil, Ky) + + Н₂О, а за границу между амфиболитовой и гранулитовой фациями — линия постоянного состава в парагенези-

се: $Cr_{s_0} + Hy_{5s-63} + Bi_{53-58} + Or + Q$, железистость минералов в котором близка к предельной в метаморфических породах гранулитовой фации. Линии моновариантного равновесия $Mu + Q \rightleftharpoons Sil + Or + H_2O$, $Gr + Bi + Q \rightleftharpoons Hy + Sil + Or + H_2O$, $Cr + Bi + Q \rightleftharpoons Hy + Cor + Or + H_2O$ приняты в качестве границ соответственно низко- и высокотемпературных частей амфиболитовой и гранулитовой фаций. При расчете равновесий с участием фазы Al_2SiO_5 учитывались условия встречаемости андалузита, кианита и силлиманита в различных фациях (субфациях) метаморфических пород.

Рассчитанный нами вариант диаграммы P_s — µ_{II-0} по своей общей топологии близок к аналогичным диаграммам А. А. Маракушева $({}^{1}, {}^{2})$ и С. П. Кориковского (19). Однако использование уточненных корреляционных диатрамм и молекулярных объемов минералов, а также учет устойчивости полиморфных модификаций Al₂SiO₅ обусловили некоторое различие в углах наклонов моно- и дивариантных равновесий, смещение реакции $Gr + Cor \Rightarrow Hv + Sil + Q$ в область более магнезиальных составов и, что особению важно, исчезновение экстремального равновесия Bi + Q = \Rightarrow Hy + Cor + Or + H₂O, базировавшегося на необоснованном экстремуме в паре Ну — Ві, который, по уточненным нами данным, отсутствует (см. рис. 1). Наиболее же важная отличительная особенность нового варианта диаграммы обусловлена учетом при сс построении температурной зависимости распределения изоморфных компонентов в сосуществующих минералах. Благодаря этому, например, диаграмма позволяет по изменению железистости биотита и кордиерита, находящихся в равновесии с одним и тем же по железистости гранатом, судить об относительной глубинности средне- и высокотемпературных моно- и дивариантных парагенезисов. Так, из диаграммы следует, что даже наименее глубинные парагенезисы гранулитовой фации с железистостью граната в кордиеритсодержащих парагенезисах около 80% по глубинности сопоставимы с наиболее глубинными кианит-мусковитсодержащими среднетемпературными парагенезисами, а гиперстен-силлиманитсодержащие парагенезисы являются самыми глубинными.

Рис. 2. Днаграмма $P_s = \mu_{\rm H_{2}0}$ для бедных кальцием высокоглиноземистых метаморфических пород, содержащих кварц, ортоклаз и мусковит

687

Таблица 1

Составы минералов (вес.%) и их	молекулярные объемы (см ³ /моль)							
в нонвариантных парагенезисах								

№ точки	Фаза *	Si	AI	Fe	Mg	к	H ₂ O	Молекул. объемы
I	Gr93 Sta89 Bi72 Cor58 Mu And Q	3,92,853,1511	$2 \\ 8,8 \\ 1,85 \\ 4 \\ 2,8 \\ 2$	2,79 1,78 1,584 1,16	$0,21 \\ 0,22 \\ 0,616 \\ 0,84$	0,85 1	1 1 1	115,15223,7515223614151,5422,69
II	Gr90 Bi70 Cor55 Mu Or Sil(And) Q	3 2,9 5 3,15 3 1 1	$2 \\ 1,7 \\ 4 \\ 2,8 \\ 1 \\ 2$	2,7 1,54 1,1	$0,3 \\ 0,66 \\ 0,9$	0,9 1 1	1 1	115,07152235,8141109,1149,9122,69
III	Gr48 Hy29 Bi25 Cor15 Or Sil Q	3 0,9 2,9 5 3 1 1	$2 \\ 0,19 \\ 1,7 \\ 4 \\ 1 \\ 2$	1,44 0,265 0,55 0,3	$1,56 \\ 0,65 \\ 1,65 \\ 1,7$	0,9 1	1	114,2531,9149,4233,7109,1149,9122,69

* And — андалузит, Bi — биотит, Сог — кордиерит, Gr — гранат, Ну — гиперстен, Ку — кианит, Mu — мусковит, Or — калиевый полевой шпат, Q — кварц, Sil — силлиманит, Sta — ставролит. Цифра при символе минерала обозначает общую железистость.

Таким образом, предлагаемый вариант диаграммы $P_s - \mu_{\rm H_{20}}$ на основании данных по железистости темноцветных минералов в моно- и дивариантных парагенезисах бедных кальцием высокоглиноземистых ортоклази мусковитсодержащих пород с избытком кварца может быть использован для определения относительной температурности и глубинности формирования средне- и высокотемпературных метаморфических комплексов, сравнительной оценки режима глубинности одпофациальных комплексов и выявления метаморфических фациальных серий.

Институт геологии Якутского филиала Поступило Сибирского стделения Академии наук СССР 21 XII 1970 Якутск

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. А. Маракушев, Сборп. Чарнокиты, «Наука», 1964. ² А. А. Маракушев, Проблемы минеральных фаций метаморфических и метасоматических пород, «Наука», 1965. ³ Д. С. Коржинский, Флзико-химические основы анализа парагенезисов минералов, Изд. АН СССР, 1957. ⁴ Д. С. Коржинский, В сборн. Химия земной коры, 1, Изд. АН СССР, 1963. ⁵ А. А. Маракушев, Термодинамика метаморфической гидратации минералов, «Наука», 1968. ⁶ А. А. Маракушев, В сборн. Региональный метаморфизм и метаморфогенное рудообразование, «Наука», 1970. ⁷ Р. А. Робиидр., В кн. Справочник физических констант горных пород, М., 1969. ⁸ С. W. Вигисham, Year Book, Carnegie Inst., Wash., 64, 202 (1965). ⁹ Н. I. Greenwood, J. Petrology, 4, 317 (1963). ¹⁰ W. Schreyer, F. Seifert, Am. J. Sci., A267, Schairer vol., 407 (1969). ¹¹ S. W. Richardson, 74, 282 (1965). ¹⁴ W. Schreyer, I. P. Schairer, J. Petrol., 2, № 3, 324 (1961). ¹⁵ W. Schreyer, stallogr., 83, 155 (1960). ¹³ В. Е. Leake, Am. Mineral., 45, № 3-4, 282 (1960). ¹⁴ W. Schreyer, 1. P. Schairer, J. Petrol., 2, № 3, 324 (1961). ¹⁵ W. Schreyer, Beitr. Mineral. Petrogr., 11, H. 3, 297 (1965). ¹⁶ У. А. Дириидр., Породообразующие минералы, 4, 1965, 3, 1966. ¹⁷ Л. Л. Перчук, Физико-химическая петрология гранитоидных и щелочных интрузий Цептрального Туркестано-Алая, «Наука», 1964. ¹⁸ Л. Л. Перчук, Равновесия породообразующих минералов, «Наука», 1970. ¹⁹ С. П. Кориковский, Вкп. Очерки физико-химической петрологии, 1, «Наука», 1969. ²⁰ С. П. Кориковский, Вкп. Очерки физико-химический петрологии, 1, «Наука», 1969. ²⁰ С. П. Кориковский, Китаморфизм, гранитизация и постмагматические процессы в докембрии Удокано-Становой зоны, «Наука», 1967.