УДК 548.736

КРИСТАЛЛОГРАФИЯ

В. И. ЛЮТИН, В. Ф. КАЗАК, В. В. ИЛЮХИН, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА CaNaHSiO₄

Смещанные натрокальциевые силикаты (и гидросиликаты) чаще всего образуются в результате воздействия на чистые Са-соединения агрессивной щелочной среды (например, солевых растворов при тампонировании буровых скважин).

Межплоскостные расстояния и относительные интенсивности дебаевских линий СаNaHSiO4

d∕n, Å	İ/İ.	d/n, Å (¹)	İ/İ ₀ (1)	d/n, Å	İ (3)	d/n, Å	\dot{I}/\dot{I}_0	$\begin{vmatrix} d/n, \\ \hat{A} (1) \end{vmatrix}$	<i>İ/İ</i> ° (1)	d/n, Å (3)	I (3)
$5,638\\4,922\\4,357\\4,008\\3,890\\3,466\\3,363\\3,319\\3,052\\2,996\\2,901\\2,864\\2,826\\2,743\\2,709$	$\begin{array}{c} 5\\ 2\\ 2\\ 8\\ 20\\ 2\\ 20\\ 2\\ 30\\ 10\\ 20\\ 5\\ 100\\ 30\\ 35\\ 15\\ \end{array}$	3,99 3,84 2,85 2,73 2,69	1 2 10 4 2	4,91 4,30 3,79 3,44 3,44 3,13 2,82 2,68	0.0.СЛ. 0.0.СЛ. СЛ. СЛ. СЛ. СЛ. СЛ. СЛ.	$\begin{array}{c} 2, 639\\ 2, 601\\ 2, 566\\ 2, 564\\ 2, 293\\ \end{array}$ $\begin{array}{c} 2, 014\\ 1, 997\\ 1, 939\\ 1, 613\\ 1, 610\\ 1, 537\\ 1, 532\\ 1, 506\\ \end{array}$	$ \begin{array}{r} 45 \\ 5 \\ 5 \\ 25 \\ 20 \\ 10 \\ 10 \\ 20 \\ 10 \\ 20 \\ 15 \\ 2 \\ \end{array} $	$\begin{array}{c} 2,31\\ 2,21\\ 2,10\\ 2,01\\ 1,935\\ 1,765\\ 1,650\\ 1,615\\ 1,593\\ 1,569\\ 1,569\\ 1,503\end{array}$	22 1 3 4 4 3 4 4 3 4 4 1 1	2,29 2,20 2,10 1,912 1,754 1,643 1,576	о. сл. о. сл. о. сл. ср. с. ср. ср. ср.

Кислый натрокальциевый силикат CaNaHSiO₄ во всех описанных ранес опытах (¹, ²) получен из безводного ортосиликата Na₂CaSiO₄ либо при обработке водяным паром, либо при гидролизе (в обоих случаях в автоклавах), либо при взаимодействии с кислым сульфатом калия (реакция в твердом состоянии) при температурах 180° С и выше (¹, ²).

Объектом нашего исследования были монокристальные образцы CaNaHSiO₄, полученные в лаборатории гидротермального синтеза при $T = 300-700^{\circ}$ С, P = 1000-3000 атм; концентрация щелочи $c \approx 30\%$. Их идентичность описанным ранее (¹⁻³) устаповлена па стадии дебасграмм (табл. 1) и по монокристальной съемке. В ромбической ячейке $a = 5,71 \pm 0,05$ Å, $b = 9,18 \pm 0,06$ Å, $c = 7,03 \pm 0,05$ Å содержится Z = 4

Таблица 2

Координаты базисных атомов в CaNaHSiO₄

Атом	x/1	y/b	z/c
Ca Si Na O ₁ O ₂	$ \begin{array}{c} 0 \\ 0,500 \\ 0 \\ 0,265 \\ 0,469 \end{array} $	$0 \\ 0,145 \\ 0,317 \\ 0,045 \\ 0,249$	$\begin{array}{c} 0 \\ 0,250 \\ 0,250 \\ 0,250 \\ 0,250 \\ 0,063 \end{array}$

съемке. В ромбической ячейке $a = Å, c = 7,03 \pm 0,05$ Å содержится Z = 4единицы СаNaHS:O₄. Федоровская группа устанавливается одпозначно по погасаниям — $C222_1$. Экспериментальный «массив» для построения P(uvw)включал 315 непулевых отражении hk0 - hk6, 0kl, 1kl (Мо_{ка}-излучение, вейсенбергограммы). Оцелка интенсивностей по шкале марок почерпения с шагом $2^{1/4}$. Поглощение пе учитывалось.

Из трехмерной функции Патерсона определились позиции всех атомов Са, Si, Na и двух О (см. (⁶)). Уточнение

Таблица 1

позиционных параметров по синтезам электронной плотности и методом наименьших квадратов привело к *R*-фактору 8,40% при общей тепловой поправке *B* = 0,283. Введение индивидуальных факторов *u*, не изменило коэффициент расходимости. Таблица 3

Межатомные расстояния в структуре CaNaHSiO4, Å

Si-тетраэдр
$Si - O_1 = 1,627$
$Si - O_1 = 1,627$
$Si - O_2 = 1,631$
$Si - O_2 = 1,631$
$O_1 - O_2 = 2,586$
$O_1^* - O_2^* = 2,586$
$O_2 - O_2^* = 2,649$
$O_1 - O_2^* = 2,727$
$O_1^* - O_2 = 2,727$
$0_1 - 0_1^* = 2,727$

Заключительные координаты базисных атомов и рассчитанные по ним межатомные расстояния приведены в табл. 2 и 3.

Крупный катион Са расположен в октаэдре, вершины которого удалены от ядра на почти одинаковые расстояния 2,324 — 2,387 Å. Размеры ребер октаэдра находятся в пределах 3,03—3,53 Å. В Si-тетраэдре расстояния Si — О равны 1,627—1,631 Å при О — О 2,59—2,73 Å. Второй крупный катион — Na — находится в четверной координации с лигандами, удаленными на 2,3—2,48 Å, но при ребрах искаженного тетраэдра ~2,68—4,36 Å.

Проекции структуры в паулинговских полиэдрах на плоскости (100) и (001) представлены на рис. 1 и 2. Основной архитектурной деталью можно считать параллельную [001] цепочку из Са-октаэдров, соединенных по ребрам. Цепочка не прямая, но качающаяся (барочная). (Подобная цепочка из Zr-октаэдров была уже отмечена ранее в (⁴).) В ромбической ячейке две идентичные цепочки связаны *C*-трансляцией. Выделенные Сацепочки скрепляются друг с другом (базисная с трансляционно повторепными вдоль оси *a* и по диагонали (a + b) / 2) с помощью Si-ортотетраэдров, каждый из которых участвует в трех цепочках, но такую же функцию выполняет и Na-тетраэдр с его весьма неправильной формой. Уголковая молекула SiO₂ реализует свои потенциальные связи на сблизившихся вершинах Са-октаэдров в це-

Таблица 4

почке, более рыхлый Na-тетраэдр, наоборот, замыкает раздвинутые (рис. 16). В слое структуры, параллельном (100), можно выделить хорошо знакомый по другим Са-силикатам фрагмент из крупных полиэдров, а именно, оливипоподобную зубчатую ленту. В натрокальциевом силикате стержень

Структура CaNaHSiO₄. Баланс валентностей

		Ka			
Анион	Ca	Si	Na	н	$\Sigma \omega_i / n_i$
$\begin{array}{c} O_1 \\ O_2 \end{array}$	$\frac{4}{6}$	1 1	$\left \begin{array}{c}1/4\\1/4\end{array}\right $	1/2	$\begin{vmatrix} 1^{11}/_{12} & (1^{11}/_{22}) \\ 1^{7}/_{12} & (2^{1}/_{12}) \end{vmatrix}$

ленты видоизменен по сравнению с идеальным оливиновым: сочлепяющиеся экваториальные квадраты октаэдров не параллельны друг другу, что и делает цепочку качающейся. На зубцах ленты располагаются рыхлые Na-тетраэдры. Как и в структуре β -Ca₂SiO₄ и ее модельных аналогов-фторобериллатов (⁵), полиэдры па зубцах имеют общее ребро с Si-тетраэдрами и можно говорить о смешанной диортогруппе; однако, если в указанных Ca-соединениях и их аналогах смешанные A (Na, Ca) + Si-группы сочлепяются в метацепочку, параллельную оси стержня, то в CaNaHSiO₄ (Na + Si)-«диортогруппы», периендикулярные оси стержня, объединяются в смешанную диметацепочку, до некоторой степе-

Рас. 1. CaNaHSiO₄; у*z*-проекция структуры в полнэдрах: а — выделены качающиеся цепочки и скрепляющие их Si-тетраэдры, 6 - слой структуры на высоте x = 0. Выделяются Са-стержни ленты с зубцами из Na-полиздров

Рис. 2. CaNaHSiO₄; план структуры (*ху*-проекция): а — расположенные в шахматном порядке торцы цепочек и цементирующие их Si-тетраэдры, б - выделены ленты со звеньями — смешанными Na, Si-«диортогруппами»

ни аналогичную силлиманитовой (Al + Si)-ленте. В последней, однако, тетраэдры связаны одной общей вершиной, в нашем силикате — сразу двумя.

Баланс валентностей этой своеобразной структуры приведен в табл. 4. Без учета вклада протона на О₁ сходится 1¹¹/₁₂ валентных единиц. в то время как на O_2 дефицит существенно выше $(1 + \frac{2}{6} + \frac{1}{4} = \frac{17}{12})$. Это позволяет с большой долей вероятности указать возможное положение протона (рис. 1а, отмечен кружком), помещенного в единственный и достаточно узкий канал структуры, и тогда можно считать, что валентные усилия Н¹⁺ разделены между двумя анионами O2, отстоящими на 2,99 Å. С учетом вклада протона сумма валентных усилий на O_2 , равная $2^{1}/_{12}$, обеспечивает локальную нейтральность постройки, не позволяя считать лишь один из анионов гидроксильной группой.

В заключение авторы выражают благодарность Л. В. Балкевичу и В. А. Кузнецову за предоставление монокристаллов и постоянный интерес к работе.

Институт кристаллографии Академии паук СССР Москва

Поступило 3 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

цитигованная литература ⁴ Э. Тило, Г. Функ, Е.— М. Вихман, Сборн. Физическая химия силикатов, ИЛ, 1956. ² Thilo, Silikattechnik, 2, 357 (1951). ³ Г. П. Ставицкая, Я. И. Рыскин, Н. А. Митропольский, Неорганические материалы, 4, 1760 (1968). ⁴ Е. Н. Треушников, В. В. Илюхин, Н. В. Белов, ДАН, 190, № 2, 334 (1970). ⁵ Н. М. Мустафаев, В. В. Илюхин, Н. В. Белов, Кристаллогра-фия, 10, 66, 805 (1965). ⁶ Э. А. Кузьмин, В. П. Головачёв, Н. В. Белов, ДАН, 192, 1, 86 (1970).