УДК 549.07.623.5

МИНЕРАЛОГИЯ

ю. и. гончаров, в. с. коваленко, и. п. хаджи

волокнистый силикат со слюдоподобной структурой

(Представлено академиком Н. В. Беловым 12 VII 1971)

При исследовании механизма минералообразования в системе NaF — MgO — MgF₂ — SiO₂ в интервале температур 600—800° и давлении, близком к нормальному, был получен несколько необычный силикат со слюдоподобной структурой в виде очень тонких волокон. Однако не только морфологические особенности кристаллов привлекли к нему наше внимание. Необычен был химический состав минеральной фазы, так как в природе неизвестны натриево-магниевые слюды. Кроме того, фтора в нем со-

Рис. 1. Дифрактограмма волокнистой фазы

держалось почти в два раза меньше, чем это необходимо для полного замещения гидроксильных позиций.

На рис. 1 и в табл. 1 приведены результаты рентгеновских исследований, выполненных на дифрактометре ДРОН-1 (СиК_а-излучение, Niфильтр). Исследуемый образец содержал небольшое количество примесей (~10-15%), в частности гекторита ($d_{001} = 12,3$ Å (¹)) и фторталька ($d_{004} = 9,06$ Å). На полученной дифрактограмме четко выделяется ряд базальных отражений, характерных для слоистых структур с межпакетным расстоянием ~ 10 Å (³, ⁴). Обращает на себя внимание низкое значение параметра b ($d_{060} = 1,493$), не соответствующее триоктаэдрическому характеру слоистой фазы. Для того чтобы выяснить это несоответствие, сравним между собой пару природных диоктаэдрических слюд мусковит — парагонит (²). Влияние натрия на уменьшение параметра выражено достаточно четко: $\Delta a = 0,04$, $\Delta b = 0,16$ и $\Delta c = 0,80$ Å; разность $d_{060} \simeq 0,03$ Å,

Слоистый силикат образует тончайшие волокна, длина которых обычно не превышает 10-20 µ, хотя встречаются волокна и значительно более длинные. Ширина колеблется от 300-500 Å (рис. 2 п 3) до 3-4 µ. Иногда отдельные волокна расслаиваются на ряд элементарных волоконец, о чем свидетельствует смещение контуров экстинкций вдоль осевой линии (рис. 36). Морфологически они очень сходны с волокнами фторамфибола, в который эта фаза полностью переходит при условиях, близких к равновесным, при повышении температуры или увеличении времени выдержки.

Рис. 2. Электронномикроскопические спимки волокон слоистого силиката. Общий вид продукта синтеза, реплика с суспензии. Микроскоп JEM-6A

Показатели преломления, определенные иммерсионным методом ($n_g = 1,541 \pm 0,002$; $n_m = 1,538 \pm 0,002$) очень близки к показателям преломления безалюминиевых слюд ($n_g = 1,539 \pm 0,002$; $n_m = 1,537 \pm 0,002$; $n_p = 1,501 \pm 0,002$) (³).

На дифференциальной кривой выделяется два небольших эндотермических эффекта при температурах 785 и 1060°. Первый из них, по-видимому,

т	•	б	÷1	17	τr	4	4
	а	- 1)		и	- 11	24	1

Базальные межплоскостные

Таблица 2

Химический состав продуктов синтеза (%)

отражения волокнистой фазы				Исходный	Образец, выдержанный в течение 4 час. при разной температуре				
Индекс	Волокни- стая фаза (1)	F-флого- пит по (4) (2)	Компонент	образец	600°	700°	800°	900°	1000*
$\begin{array}{c} 001\\ 002\\ 003\\ 004\\ 005\\ = 5,18 \text{ A}\\ \mathbf{A}, \mathbf{\beta} = 10\\ \mathbf{A}, \mathbf{\beta} = 0 \text{ for } \mathbf{\beta} = 10 \text{ for } $	9,67 4,81 3,31 2,50 1,993 Meyahu b = 8,962 $0^{\circ}03'; 2:a$	9,97 4,99 3,33 2,50 1,998 e: $I: a =$ A, $c = 9.82$ = 5.299 A, 125 A $a =$	$\begin{array}{c} \mathrm{SiO}_2\\ \mathrm{Al}_2\mathrm{O}_3\\ \mathrm{Fe}_2\mathrm{O}_3\\ \mathrm{MgO}\\ \mathrm{Na}_2\mathrm{O}\\ \mathrm{K}_2\mathrm{O}\\ \mathrm{F}\\ \mathrm{F}\\ \mathrm{F}\\ \mathrm{F-O}_2 \end{array}$	58,60 0,10 0,51 29,86 7,70 0,04 6,06 2,54	59,05 0,84 28,98 7,13 6,16 2,59	59,0 58,40 Не определял 0,84 1,00 29,46 29,46 7,65 7,36 Не определял 5,52 5,84 2,32 2,46		60,00 	59,75 0,61 30,53 7,68 2,00 0,84
$= 99^{\circ}55'$.	, c 10	,100 , 0	Сумма	100,50	99,57,	99,67	99,62	100,32	99,73

соответствует началу выделения фтора, так как именно с этого момента начинается некоторая потеря веса, достигающая заметной величины при 900°. Эффект при температуре 1060° отвечает фазовым превращениям. При этом образуется смесь амфибола и форстерита.

Рис. 3. Морфологические особенности отдельных волокон слоистого силиката. Микроскоп JEM-6A

Как известно, компенсационный заряд в слюдах возникает, как правило, в результате замещения части кремния на алюминий в тетраэдрических позициях. В составе волокнистой фазы практически отсутствует алюминий, и, следовательно, этот источник компенсационного заряда невозможен. Можно предположить, что компенсационный заряд является результатом замещения части гидроксильных позиций кислородом, заряд которого выше, чем у фтора, подобно тому как это имеет место в лепидолите (²). Такое предположение хорошо согласуется с низким содержанием фтора в исследуемой фазе (см. табл. 2). Исходя из этого приближенная кристаллохимическая формула волокнистого силиката со слюдоподобной структурой может быть записана как NaMg₃[Si₄O₁₀] (F, O₂).

Выше уже отмечалось, что рассматриваемый слоистый силикат является промежуточной фазой при синтезе фторамфибола. Дальнейшее изучение его кристаллохимии позволит решить один из мало изученных вопросов — о мехацизме образования фторамфибола.

Авторы выражают признательность Г. А. Сидоренко за помощь, оказанную в проведении рентгеновских исследований.

Поступило 29 IV 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. И. Гончаров, И. П. Хаджи, В. С. Коваленко, ДАН, 201, № 1 (1971). ² Х. Штрунц, Минералогические таблицы, М., 1962. ³ З. Е. Луговская, А. Б. Островская и др., Минералогич. сборн. Львовск. гос. унив., 23, в. 2 (1969). ⁴ А. Н. Винчелл, Г. В. Винчелл, Оптические свойства искусственных минералов, М., 1967.