УДК 548.736

КРИСТАЛЛОГРАФИЯ

А. Н. КОРНЕВ, Б. А. МАКСИМОВ, В. В. ЛИДЕР, В. В. ИЛЮХИН, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА Na₂Cu [Si₄O₁₀]

Исследованный силикат получен при изучении гидротермальной кристаллизации в системе $Na_2O - Pr_2O_3 - SiO_2 - H_2O$ и первоначально был отнесен к соединениям типа $Na_x Pr_y Si_p O_q$.

Выбор триклинпой ячейки по Делоне (⁴) приводит к параметрам a = 6,94; b = 7,87; c = 9,89 Å; $a = 102^{\circ}8'; \beta = 102^{\circ}8'; \gamma = 115^{\circ}42', и предварительное испытание на центр инверсии * и последующее с использованием интегральных тестов для слоевых <math>0kl$, 3kl были в пользу центросимметричности. Структурное определение также подтвердило федоровскую группу $P\overline{1}$.

Вытяпутые вдоль [100] прозрачные цвета морской волны кристаллы нового спликата обладают неясной спайностью по (001).

Для рентгеновского анализа использовался монокристалл $0,48 \times 0,30 \times \times 0,18$ мм³. Экспериментальный набор интенсивпостей дали непулевые отражения 0kl - 5kl; h0l - h2l; hk0 (КФОР, Мо K_{α} -излучение) с оценкой по маркам почернения (2^{1/4}-шкала). Все последующие расчеты выполнены по комплексу программ «Кристалл» (²).

Отсутствие на трехмерной функции Патерсона P(u, v, w) системы резко выраженных по мощности пиков Pr — Pr (которых следовало ожидать для предполагаемого набора атомных рассеивателей с порядковыми номерами 59; 14; 11; 8) заставило усомниться в наличии Pr в химической формуле исследуемого соединения и вернуться к уточнению его качественного химического состава. Рентгеноспектральный анализ тщательно отобранных монокристаллов выявил Cu > 10% и Si при полном отсутствии Pr. Содержание Na₂O ~ 12% определено на пламенном фотометре ФПФ-58 (Л. Н. Тиунова, МГУ, геофак) и, тем самым, указанное соединение было классифицировано как новый медный силикат натрия **, но не Na, TR-силикат.

В силу вышензложенного расшифровка данного соединения проводилась без знания химической формулы. На первом этапе содержимое ячейки было разбито на две группы в соответствии с атомными факторами: A - Cu (Z = 29) и Si (Z = 14), а также B - Na (Z = 11) и O. (Z = 8). Пять более тяжелых *** атомов Cu+Si (группа A) выделены из трехмерной функции Патерсона. Атомы Na и O (их количество и координаты) локализованы из серии трехмерных синтезов электронных плотностей.

Первоначально для группы A использовалась атомная кривая f_{s1} , а для группы B атомная кривая f_0 . Дифференциация внутри каждой группы уверенно выполнена при апализе межатомных расстояний катион — апион.

Заключительные значения уточненных мстодом наименьших квадратов $(R_{hkl} \approx 9.6\%)$ 51 позиционного параметра вместе с индивидуальными теп-

^{*} Пьезоэффект не обнаружен (физический факультет МГУ им. М. В. Ломоносова). ** Появление этого соединения среди продуктов гидротермального синтеза в системе Na₂O – Pr₂O₃ – SiO₂ – H₂O можно объяснить частичным растворением медных вкладышей при T ~ 450° C, P ~ 1500 ar., C_{NaOH} = 40%.

^{***} Существенными аргументами отпесения Si в группу Λ и Na в группу B были также концентрировапность электронной массы в первом (r = 0,39 Å) и размазанность ее во втором (r = 0,98 Å).

ловыми поправками, на которых существенно сказалось поглощение (так как $2 \le \mu R \le 3$) приведены в табл. 1. Последний синтез электронной плотности, рассчитанный по координатам табл. 1, особенно выпукло отразил модель структуры. При практически отсутствующих пиках-«паразитах» соотпошения высот пиков на сечениях $\rho(xyz)$ удовлетворительно соответствуют атомным номерам.

Экспериментально измеренная плотность $d_{\partial} \approx 2,9$ вполне удовлетво рительно согласуется с рассчитанной $d_x \approx 2,95$, и тем самым подтвержда

Таблица 1

Атом	x/a	y/b	z/c	Bj	Атом	x/a	y/b	z/c	B_{j}
$CuSi_1Si_2Si_3Si_4O_1O_2O_3O_4$	$ \begin{vmatrix} 0,241 \\ -0,237 \\ 0,414 \\ 0,185 \\ -0,077 \\ 0,471 \\ 0,584 \\ 0,005 \\ 0,199 \end{vmatrix} $	$\begin{array}{c} 0,287\\ 0,060\\ 0,656\\ 0,378\\ 0,293\\ 0,647\\ 0,134\\ 0,207\\ 0,904 \end{array}$	$ \begin{array}{c} 0,426\\ -0,193\\ 0,264\\ 0,748\\ 0,147\\ 0,431\\ -0,259\\ -0,207\\ 0,017\\ \end{array} $	$\begin{array}{c} -0,280\\ -0,154\\ 0,072\\ -0,045\\ -0,184\\ 0,153\\ 0,130\\ 0,667\\ 0,340\end{array}$	O ₅ O ₆ O ₇ O ₈ O ₉ O ₁₀ Na ₁ Na ₂	$\begin{array}{c} 0,414\\ 0,335\\ 0,244\\ 0,046\\ 0,114\\ 0,160\\ 0,342\\ 0,266\\ \end{array}$	$\begin{array}{c} 0 \ ,368 \\ 0 \ ,477 \\ 0 \ ,604 \\ 0 \ ,780 \\ 0 \ ,352 \\ 0 \ ,466 \\ 0 \ ,237 \\ 0 \ ,729 \end{array}$	$\begin{array}{c} 0,818\\ 0,266\\ 0,859\\ 0,720\\ 0,581\\ 0,143\\ 0,017\\ 0,580 \end{array}$	$ \begin{smallmatrix} 0 & ,404 \\ -0 & ,320 \\ 0 & ,226 \\ 0 & ,350 \\ 0 & ,272 \\ -0 & ,030 \\ 0 & ,740 \\ 0 & ,573 \\ \end{smallmatrix} $

Координаты	атомов	в	структуре	Na	Cu[Si4)10
1/1			10 01			- TA

Таблица 2

Межатомные расстояния в структуре Na₂Cu[Si₄O₁₀], Å

Си-полиэдр	Na ₁ -полиэдр	№а ₂ -полиэдр	Si ₁ -тетраэдр
$Cu - O_1^* = 1,96$	$Na_1 - O_4^* = 2,28$	$Na_2 - O_8 = 2,40$	$Si_1 - O_6^* = 1,55$
$-0_8^* = 1,96$	$-0_5^* = 2,43$	$-0_1 = 2,47$	$-0_3 = 1,63$
$-0_9 = 2,02$	$-0_7^* = 2,46$	$-0_9 = 2,50$	$-\mathbf{0_4^*} = 1.63$
$-0_6 = 2,02$	$-0_6 = 2,58$	$-0_6^* = 2,55$	$-0_2^* = 1,66$
$-0_1 = 2,46$	$- O_5^* = 2,60$	$- O_9 = 2,59$	
	$-0_3 = 2,73$	$-0_2^* = 2,69$	
	- O ₁₀ = 2,86		

Si ₃ -тетраэдр	Si ₄ -тетраэдр
$Si_3 - 0 = 1,55$	$Si_4 - O_8^* = 1,54$
$-0_3^* = 1,58$	$-0_{10} = 1,61$
$-0_5 = 1,65$	$= 0_4^* = 1,68$
$-0_7 = 1,66$	$-0_7^* = 1,68$
	Si ₃ -тетраэдр Si ₃ - O = 1,55 $- O_3^* = 1,58$ $- O_5 = 1,65$ $- O_7 = 1,66$

ется установленная нами химпческая формула Na₂Cu[Si₄O₁₀]. Основные межатомные расстояния приведены в табл. 2.

Кристаллохимическая характеристика Na₂Cu[Si₄O₁₀] четко выступает на проекциях *xz* и *yz* (рис. 1) с центральным компонентом — трубчатым кремпскислородным радикалом [Si₈O₂₀]_∞, который впервые был зафиксирован в структуре природного K, Fe, Na-силиката фенаксита (³). Как п е последпем, этот трубчатый радикал [Si₈O₂₀]_∞ воспринимается наиболее наглядно (рис. 1*a*) как результат конденсации «плашмя» двух власовитовых цепочек (⁴) по схеме 2[Si₄O₁₁]_∞ — 2O == [Si₈O₂₀]_∞. Эта конденсация формально осуществляется квазиплоскостью симметрии, в результате чего два ортотетраэдра между диортогруппами в исходной власовитовой цепочке связываются с аналогичными тетраэдрами другой власовитовой цепочки в диортогруппы (рис. 1*б*), оси которых перпендикулярны основному направлению цепочек (рис. 1*a*). Геометрия трубчатого радикала [Si₈O₂₀]_∞ накова, по за счет замены К па Na происходит некоторое «сплющивание» трубчатого радикала.

У К в фенаксите к.ч. 10 с расстояниями К — O = 2,73 - 3,41 Å, у соответствующего Na в Na₂Cu[Si₄O₁₀] к.ч. 7 с расстояниями Na—O = 2,28-2,86 Å.

Отлична от фенаксита координация и тех Na, которые располагаются между кремпекислородными радикалами, их к.ч. 6 и расстояния Na-0 = 2,40-2,69 Å, в то время как в фенаксите у Na к.ч. 5 (полуоктаэдры), и расстояния Na – 0 = 2,44–2,79 Å. Сu, подобно Fe в фенаксите, находится в окружении 5 апионов *, четыре на расстояниях 1,95–2,00 Å, иятый лигаид отстоит на 2,46 Å. В обеих сравниваемых структурах две соседние кремнекислородные трубки связаны центром симметрии.

Расшифровка кристаллической структуры Na₂Cu[Si₄O₁₀], точнее Na₄Cu₂[Si₈O₂₀], утверждает позиции недавно инвентаризированного в

Рис. 1. Na, Сu-диметасиликат. Проекция кристаллической структуры на плоскости xz (a) и yz (б)

земных породах трубчатого фенакситового радикала также и в экспериментальной минералогии. Еще раз подчеркивается необходимость различать димстасиликатные радикалы, бесконечные в одном измерении, [Si₈O₂₀]_~, от бескопечных в двух измерепиях сеток [Si₈O₂₀]_{~~}.

В заключение авторы выражают благодарность Б. Н. Литвину и С. А. Федосовой за любезно предоставленные кристаллы, а также В. П. Головачеву и Э. А. Кузьмину за обсуждение результатов.

Институт кристаллография Академии паук СССР Москва Поступило 5 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ International Tables for X-Ray Cryst., **1**, 1952, р. 530. ² А. Б. Товбис, Б. М. Щедрия, Комплекс программ для решения задач структурного анализа кристаллов, **1**, М., 1968. ³ В. П. Головачев, Кандидатская диссертация, М., 1970. ⁴ Ю. А. Пятенко, А. А. Воронков, ДАН, **141**, 958 (1961). ⁵ Н. В. Белов, Мин. сборн. Львовск. Гос. унив., **19**, в. 1, 3 (1965).

6 — ДАП. т. 205. №4

^{*} Которое характеризует именно Си в ряде соединений (5).