УДК 519.3:62-50

MATEMATHKA

м. с. никольский

ЛИНЕАРИЗУЕМЫЕ ОБЪЕКТЫ И ИХ ПРИМЕНЕНИЕ В ДИФФЕРЕНЦИАЛЬНЫХ ИГРАХ ПРЕСЛЕДОВАНИЯ

(Представлено академиком Л. С. Понтрягиным 27 І 1972)

1. В n-мерном нормированном пространстве R^n происходит движение вектора z, подчиняющееся уравнению

$$\dot{z} = h(z, w), \quad z(0) = z_0,$$
 (1)

где управление w=w(t)-s-мерная измеримая вектор-функция, удовлетворяющая ограничению $w(t) \in W$ — компакту из нормированного R^s , h(z,w)— непрерывная на $R^n \times W$ вектор-функция. Предполагается, что при произвольном допустимом управлении w(t), $0 \le t < +\infty$, решение уравнения (1) существует на всей полуоси $[0,+\infty)$.

Определение 1. Объект z называется линеаризуемым для z_0 , если существует такая константа $t(z_0) \ge 0$, что при $t \ge t(z_0)$ произвольное решение z(t) уравнения (1), соответствующее произвольному допустимому управлению w(t), удовлетворяет уравнению

$$\dot{z} = Az + k(z, w), \tag{2}$$

где A — постоянная $(n \times n)$ -матрица, причем

$$k(z(t), w(t)) \in S, \tag{3}$$

где S — некоторый компакт из R^n .

Определение 2. Объект z называется линеаризуемым, если он линеаризуем для любого $z_0 \subseteq R^n$, причем A, S (см. (2), (3)) не зависят от z_0 .

Определение 3. Пусть Z_1 , Z_2 — произвольные непустые множества из R^n . Геометрической разностью (см. (¹)) их называется множество Z_3 , состоящее из всех векторов $z \in R^n$, удовлетворяющих условию $z + Z_2 \subset Z_1$. Пишут $Z_3 = Z_1 \times Z_2$.

Определение 4. Пусть h(z,w) в (1) имеет вид h(z,w)=h(z)+w, где $w \in W \subset R^n$. Пусть объект z линеаризуем для z_0 и существует такая постоянная матрица A, что $-h(z(t))+Az(t) \rightleftharpoons S_1$ — компакту при $t \geqslant \tau(z_0) \geqslant 0$ для произвольной траектории z(t) уравнения (1), причем множество $\Omega = W \rtimes S_1$ непусто. Тогда объект z называется и деально линеаризуемым для z_0 .

Определение 5. Объект z называется идеально линеаризуемым, если он идеально линеаризуем для каждого $z_0 \in \mathbb{R}^n$, причем A, S_1 не зависят от z_0 .

Если объект z линеаризуем для z_0 , то при $t \geqslant t(z_0)$ любое решение уравнения (1) удовлетворяет уравнению

$$\dot{z} = Az + \omega, \quad z(0) = z_0, \tag{4}$$

где $\omega = \omega(t) - n$ -мерная измеримая вектор-функция, удовлетворяющая ограничению $\omega(t) \in S$.

Если объект z идеально линеаризуем для z_0 , то при $t \geqslant \tau(z_0)$ управляющий объектом z имеет возможность, применяя управление $w(t) = w_1(t) + \omega(t)$, где $w_1(t) = -h(z(t)) + Az(t)$, $\omega(t) \in \Omega$,— произвольная n-мерная измеримая вектор-функция, добиться того, что решение z(t) уравнения (1) удовлетворяет уравнению

$$\dot{z} = Az + \omega(t), \quad z(0) = z_0.$$
 (5)

2. Определение 6. Пусть r — произвольная $(n \times n)$ -матрица. Уравнение (1) называется r - диссипативным, если существует такая

функция $t(z_0) \geqslant 0$, что при $t \geqslant t(z_0)$ произвольное решение уравнения (1) удовлетворяет условию $rz(t) \in S_2$, где S_2 — компакт.

Если функция h(z, w) (см. (1)) может быть представлена в виде Az + l(z, w), где l(z, w) ограничена по норме на любом множестве, на котором вектор rz ограничен по норме, то из r-диссипативности уравнения (1) следует линеаризуемость объекта z.

Условимся в дальнейшем буквой k с индексом обозначать константы,

буквой E — единичную $(n \times n)$ -матрицу.

Теорема 1. Пусть при $\|z\| \geqslant k_1 > 0$ определена непрерывно дифференцируемая функция Ляпунова v(z), удовлетворяющая условиям: v(z) > 0; $v(z) \to +\infty$ при $\|z\| \to +\infty$; (grad v(z), h(z, w)) < 0 при любых z из $\|z\| \geqslant k_1$, $w \in W$. Тогда уравнение (1) E-диссипативно.

Примечание. Символ (., .) означает скалярное произведение век-

торов: если
$$a=(a_1,\ldots,a_n),\,b=(b_1,\ldots,b_n)\in R^n,\, \tau o\ (a,\,b)=\sum_{i=1}^n a_ib_i.$$

Следствие. Если h(z,w) в (1) имеет вид $h(z,w)=h_1(z)+h_2(z,w)$ и для уравнения $\dot{z}=h_1(z)$ при $\|z\|\geqslant k_2>0$ определена непрерывно дифференцируемая функция Ляпунова v(z), удовлетворяющая условиям: $v(z)>0;\ v(z)\to +\infty$ при $\|z\|\to +\infty;\ (\operatorname{grad} v(z),\ h_1(z))<0,\ ro\ для$ Е-диссипативности уравнения (1) достаточно выполнения неравенства $(\operatorname{grad} v(z),\ h_2(z,w))<-(\operatorname{grad} v(z),\ h_1(z))$ при $\|z\|\geqslant k_3\geqslant k_2,\ w\in W.$

Это следствие представляет интерес по следующей причине: вопросам наличия у уравнения $\dot{z} = h_1(z)$ функций v(z), удовлетворяющих сформулированным выше условиям, посвящена общирная литература по теории устойчивости и теории колебаний (см., например, $\binom{2-4}{2}$).

T е орема 2. Пусть уравнение (1) имеет вид

$$\dot{z} = Az + l(z, w), \tag{6}$$

где $||l(z, w)|| \le k_4 ||rz|| + k_5$ при $||z|| \le k_6$, и при $t \le 0$ $||re^{tA}|| \le k_7 e^{-\alpha t}$, где $\alpha > 0$ и матричная норма согласована с нормой R^n . Если $k_4 k_7 < \alpha$, то уравнение (6) r-диссипативно и при $t \ge t_\epsilon(z_0) \ge 0$

$$||rz(t)|| \leq \frac{k_4k_7k_8}{a-k_4k_7} + \varepsilon$$
,

где $k_8 = \max\{k_{\mathbf{5}}, \max_{\parallel z \parallel \leqslant k_{\mathbf{6}}, \, w \in \mathcal{W}} \parallel k_{\mathbf{4}} \parallel rz \parallel - \parallel l\left(z,\, w\right) \parallel \mid\}, \; \varepsilon > 0 \; - \; произвольно$

малая константа.

Теорема доказывается с помощью леммы Гронуолла.

3. Пусть в k-мерном нормированном пространстве R^k движется объект $\dot{x} = f(x) + u, \quad x(0) = x_0,$ (7)

где u=u(t)-k-мерная измеримая вектор-функция, удовлетворяющая ограничению $u(t) \in P$ — компакту из R^k , f(x) — непрерывная на R^k вектор-функция. Пусть в l-мерном нормированном пространстве R^l движется

 $\dot{y} = g(y, v), \quad y(0) = y_0,$ (8)

где v=v(t)-q-мерная измеримая вектор-функция, удовлетворяющая ограничению $v(t)\in Q$ — компакту из нормированного R^q , g(y,v)— непрерывная на $R^t\times Q$ вектор-функция. Предполагается, что при произвольных допустимых $u(t),\ v(t),\ 0\leqslant t<+\infty$, решения уравнений (7), (8) продолжимы на $[0,+\infty)$. Объект x— догоняющий, объект y— убегающий. Преследование считается законченным при $t_1\geqslant 0$, когда впервые $(x(t_1);\ y(t_1))\in M$ — множеству из $R^k\times R^t$. Задача преследования рассматривается с точки зрения преследователя при обычных предположениях относительно его информированности (см. $\binom{1}{s}$ -s)).

Важной проблемой является выделение начальных состояний x_0 , y_0 , из которых догоняющий может завершить преследование при любом допустимом поведении убегающего за конечное время.

объект

Пусть объект x идеально линеаризуем для x_0 , а объект y линеаризуем для y_0 . Тогда при $t \geqslant t_0 = t(x_0, y_0)$ вместо уравнений (7), (8), как это следует из выше сказанного, можно рассмотреть уравнения

$$\dot{x} = A_1 x + \omega_1, \quad \omega_1 \in \Omega, \quad x(t_0) = x(t_0), \tag{9}$$

$$\dot{y} = A_2 y + \omega_2, \quad \omega_2 \in S, \quad y(t_0) = y(t_0).$$
 (10)

Для решения поставленной проблемы для линейной игры (9), (10) имеется несколько эффективных методов (см. (1, 6-8)), и они могут помочь в решении проблемы в нелинейной игре (7), (8). Отметим, что матрицы A_1 , A_2 и множества Ω , S определяются, вообще говоря, неоднозначным образом. Меняя матрицы A_1 , A_2 и соответственно множества Ω , S, можно попытаться удовлетворить условиям одной из теорем (см. (¹, $^{6-8}$)), обеспечивающих возможность окончания преследования в линейной игре (9), (10) из начального состояния $x(t_0)$, $y(t_0)$. Заметим, что положение точки $y(t_0)$ (если $t(x_0, y_0) > 0$) неизвестно в момент t = 0, но точку $x(t_0)$ догоняющий может выбрать при t=0 выгодным для себя образом, исходя из своих и убегающего возможностей и предполагая применить при $t \geqslant t_0$ линейную теорию для игры (9), (10) (дополнительно надо потребовать единственности решения уравнения (7)). В частности, если потребовать, что объект x (см. (9)) имеет возможность осуществить окончание преследования объекта y (см. (10)) из любого начального состояния $x(t_0)$, $y(t_0)$ за конечное время (зависящее от начального состояния), то в исходной игре преследования (7), (8) объект x может осуществить окончание преследования из любого пачального состояния x_0 , y_0 за конечное время. Это обстоятельство используется при рассмотрении при-

4. Пример 1. Движение управляемого объекта описывается уравне-

нием $Lx=\varkappa w$, где L — дифференциальный оператор,

$$L = \sum_{i=0}^{m} a_i \left(x, ..., \frac{d^{m-1} x}{dt^{m-1}} \right) \frac{d^i}{dt^i},$$

 $a_i \left(x, ..., \frac{d^{m-1} \, x}{dt^{m-1}} \right)$ — непрерывные скалярные функции своих аргументов, причем $a_m = 1; \; x-k$ -мерный вектор из нормированного пространства $R^h, \; k \geqslant 1; \; \varkappa$ — положительная константа, $\|w\| \leqslant 1$. Предполагается,

что $a_i = a_i + b_i \left(x, ..., \frac{d^{m-1}x}{dt^{m-1}} \right), \ i = 0, ..., m-1,$ где a_i — константы,

 $|\,b_i|\leqslant \Delta_i,\,i=0,\ldots,m-1$, и что все корни уравнения

$$\sum_{i=0}^{m} \alpha_i \lambda^i = 0, \quad \alpha_m = 1, \tag{11}$$

имеют отрицательные действительные части.

В фазовом пространстве R^{mh} векторов $z=(z_1;z_2\ldots;z_m)$, где $z_i\in R^h$, введем некоторую норму $\|z\|$, от которой потребуем, чтобы $\|z\|\gg \max_{i=1,\ldots,m}\|z_i\|$. Рассмотрим блочную $(mk\times mk)$ -матрицу

$$\mathfrak{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ -\alpha_0 & -\alpha_1 & -\alpha_2 & \dots & -\alpha_{m-1} \end{pmatrix}.$$

Из предположения о корнях уравнения (11) следует, что $\|e^{\mathfrak{A}^t}\| \leqslant k_9 e^{-\alpha t}$.

(12)

где матричная норма согласована с нормой R^{mh} . Положим $\mu = \sum_{i=0}^{m} \Delta_i$. Используя теорему 2, получаем, что при $k_0\mu < \alpha$ изучаемый объект ли-

неаризуем, а при $k_9(\mu^2 + \mu) < \alpha$ идеально линеаризуем, причем в качестве матрицы A можно взять \mathfrak{A} .

 Π ример 2. Рассмотрим предыдущий пример для случая m=2. $a_i > \hat{0}, i = 0, 1, \text{ и } \frac{1}{4}{a_1}^2 - a_0 > 0.$ При сделанных предположениях корни λ₁, λ₂ уравнения (11) действительны, различны и отрицательны; будем считать $\lambda_2 > \lambda_4$.

Введем в пространстве R^{2k} векторов $z = (z_1; z_2)$ норму формулой $||z|| = ||z_1|| + ||z_2||$. Определим норму блочной $(2k \times 2k)$ -матрицы $C = \begin{pmatrix} \mathbf{c}_{11} & \mathbf{c}_{12} \\ \mathbf{c}_{21} & \mathbf{c}_{22} \end{pmatrix}$ следующим образом: $\|C\| = \max(|c_{11}| + |c_{21}|; |c_{12}| +$ $+|c_{22}|$), очевидно она согласована с нормой R^{2h} . Нетрудно показать, что в рассматриваемом случае в (12) можно положить

$$k_{9} = \frac{1}{\lambda_{2} - \lambda_{1}} \max \{ |\lambda_{1}| + \lambda_{1}\lambda_{2}; 1 + \lambda_{2} - \lambda_{1} \}, \quad \alpha = |\lambda_{2}|.$$

 $\mu = \max \Delta_i$, используя теорему 2, можно утверждать, что при Полагая $k_9\mu < \alpha$ объект x линеаризуем, а при $k_9(\mu^2 + \mu) < \alpha$ идеально линеаризуем.

Пример 3. Движение управляемого объекта описывается уравнением: $\ddot{x} + a_i(x, \dot{x})\dot{x} + a_0(x)x = \varkappa w$, где a_i , i = 0, 1,— непрерывные скалярные функции, x-k-мерный вектор из нормированного пространства R^k , $k\geqslant 1$, arkappa- положительная константа, $\|w\|\leqslant 1$. Предполагается, что $a_1(x,\dot{x})\geqslant a_1, \ a_0(x)\geqslant a_0, \ \text{где}\ a_1, \ a_0$ — положительные константы, что существует такая непрерывно дифференцируемая скалярная функция G(x), что grad $G(x) = a_0(x)x$ и что $G(x) \to +\infty$ при $||x|| \to +\infty$. Обозначим через h(z,w) 2k-мерный вектор $(z_2;-a_1(z_1,z_2)z_2-a_0(z_1)z_1+\varkappa w)$. Потребуем, чтобы при $\|z\|\geqslant k_{10}>0$ $|(\operatorname{grad} a_1(z_1,z_2),h(z,w))|\leqslant \gamma$, где константа $\gamma < \min \{\alpha_0, 2\alpha_1(-\alpha_1 + \sqrt{\alpha_1^2 + \alpha_0})\}$. При сформулированных предположениях рассматриваемое уравнение Е-диссипативно.

 Π р и м е р 4. Объект x, описываемый уравнением $\ddot{x} + \alpha(x, \dot{x})\dot{x} = \rho u,$

где x-k-мерный вектор из нормированного пространства R^k , $k\geqslant 1$, $a(x,\dot{x})$ — непрерывная скалярная функция, ρ — положительная константа, $||u|| \leq 1$, преследует объект

 $\ddot{y} + \beta(y, \dot{y})\dot{y} = \sigma v,$

где $y \in R^{*}$, $\beta(y,\dot{y})$ — непрерывная скалярная функция, σ — положительная константа, $\|v\| \leqslant 1$. Преследование считается законченным, когда впервые $x(t_1) = y(t_1)$. Поставленная задача является нелинейным аналогом контрольного примера (см. (5)).

Будем предполагать выполненными неравенства

$$lpha_1\geqslantlpha(x,\,\dot{x})\geqslantlpha_0,\quadeta_1\geqslanteta(y,\,\dot{y})\geqslanteta_0,\
ho\left(1-rac{\Delta}{lpha_0}
ight)>\sigma\left(1+rac{\delta}{eta_0}
ight);\quadrac{
ho}{lpha_0}rac{lpha_0-\Delta}{lpha_0+\Delta}>rac{\sigma}{eta_0}$$
 ,

где α_0 , α_1 , β_0 , β_1 — положительные константы, $\Delta = \frac{1}{2}(\alpha_1 - \alpha_0)$, $\delta = \frac{1}{2}(\beta_1 - \beta_0)$. Используя идеальную линеаризуемость объекта (13) и линеаризуемость объекта (14), можно показать, привлекая известные результаты Л. С. Понтрягина (см. (5)), что в рассматриваемой задаче преследование можно завершить за конечное время из любого начального состояния.

Математический институт им. В. А. Стеклова Академии наук СССР Москва

Поступило 24 I 1972

Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. С. Понтрягин, ДАН, 174, № 6 (1967).

² Н. Н. Красовский, Некоторые задачи теории устойчивости движения, 1959.

³ В. А. Плисс, Нелокальные проблемы теории колебаний, «Наука», 1964.

⁴ Б. П. Демидович, Тр. Международн. симпозиума по нелинейным колебаниям, 2, Киев, 1963.

⁵ Л. С. Понтрягин, УМН, 21, № 4 (1966).

⁶ Л. С. Понтрягин, ДАН, 175, № 4 (1967).

⁷ Н. Н. Красовский, Игровые задачи о встрече движений, «Наука», 1970.

⁸ Б. Н. П шенин на детмулитира и телемуациясь № 4 (1968). ничный, Автоматика и телемеханика, № 1 (1968).