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Аннотация. В разнообразных задачах по физике часто используются какие-либо величины, являющиеся бесконечными. 
Встречаются случаи, когда сразу несколько величин стремятся к бесконечности. Иногда встречаются ситуации,  
требующие более аккуратного подхода при решении. В данной работе на примере задачи из раздела «Электростатика» 
рассматриваются некоторые особенности решения при использовании бесконечных величин. 
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Abstract. In various problems in physics, some quantities that are infinite are often used. There are cases when several 
quantities simultaneously tend to infinity. Sometimes there are situations that require a more careful approach to solving. In this 
paper, using the example of a problem from the section “Electrostatics”, some features of the solution when using infinite 
quantities are considered. 
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Introduction 
When considering physical problems, we often 

encounter problems where one of the parameters (or 
several parameters) is infinite. Sometimes we 
encounter situations that require a more careful 
approach when solving problems with infinite 
quantities. As an example, let us consider the 
following problem (offered at the Moscow City 
Physics Olympiad) [1]. 

 

 
 

Figure 0.1 – Uniformly charged half-planes 
(thickened segments), perpendicular to the plane 

of the drawing 

Two parallel half-planes are uniformly charged 
with charge density +  on the upper half-plane and 
−  on the lower half-plane. Find the magnitude and 
direction of the electric field strength E at point N, 
which is located at a height h above the edge of the 
half-planes (Figure 0.1). The distance between the 
half-planes δ is small compared to h. 

In this problem, the geometric dimensions of 
the half-planes are infinite parameters. Let us 
consider possible options for analyzing and solving 
this problem. 

 
1 Preliminary analysis using the formula for 

an infinite plane 
Let us consider the possibility of using the 

formula for the electric field strength of an infinite 

plane 
02

E





 [2]–[6]. The field strength in this 

case is perpendicular to the plane (i.e. there is only a 
component perpendicular to the plane, and the 
component parallel to the plane is zero). Then for 
half-planes (upper and lower, respectively), for 
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reasons of symmetry, there will be components 
perpendicular to both planes and equal to 

1
04

E 





 and 2

0

.
4

E 


 


 

The resulting component perpendicular to both 
planes will be equal to zero due to the fact that the 
half-planes have different charge signs with the 
same absolute value. As for the component parallel 
to both half-planes (along the OX axis), the question 
remains open. Thus, the use of the formula for the 
field of an infinite plane as applied to this problem 
shows that the component perpendicular to the plane 
will be equal to zero (E = 0), which will be used 
further (we will find only the component of the 

vector E


 parallel to the half-planes). 
 

2 Solution with consideration of mutually 
compensating strips 

Let us draw two planes through point N, 
perpendicular to the plane of the drawing (Figure 
2.1) so that they form a small angle d with each 
other and pass through both charged half-planes. 

 

 
 

Figure 2.1 – Two planes (dashed lines) 
perpendicular to the plane of the drawing 
and intersecting both charged half-planes 

 
These planes will cut out two narrow strips 

A1B1 and A2B2 in the charged half-planes, 
perpendicular to the plane of the drawing (Figure 
2.1). It is known that an infinitely long uniformly 
charged thread creates an electric field of intensity 
[2]–[6] 

0

1
,

2
E

r





 

where τ – is the linear charge density of the thread,  
r – is the distance from the thread to the point under 
consideration. 

The strips A1B1 and A2B2 can be considered 
infinitely narrow, and then they create the same field 
at point N as a uniformly charged thread. That is, the 
strips A1B1 and A2B2 will create a field of intensity at 
point N 

1 11
1

0 1 0 1

1 1

2 2

A B
E

NA NA


 

 
 

и 

2 22
2

0 2 0 2

1 1
,

2 2

A B
E

NA NA


 

 
 

where 1 1 1A B    and 2 2 2 .A B    

In this case, the vector 1E


 is directed from the 

strip A1B1, and the vector 2E


 is directed toward the 

strip A2B2. From the similarity of the triangles A1B1N 

and A2B2N, we obtain that 1 1 2 2

1 2

A B A B

NA NA
 , therefore, 

the fields created by both strips at point N 
compensate each other due to the different charges 
of the half-planes, and the resulting field is zero. 

Such reasoning is valid for all pairs of strips 
cut from the upper and lower half-planes. If the 
segment A1B1 tends to infinity, then the segment 
A2B2 will also tend to infinity, i. e. both half-planes 
will be covered by these paired strips in this 
partition. Such partitions into paired strips can cover 
the upper and lower half-planes. 

In this case it may seem that the resulting 
electric field strength at point N is zero. However, 
this approach is incorrect, since points B1 and B2 
simultaneously tend to infinity according to different 
laws (point B2 of the lower half-plane tends to 
infinity faster). The correct approach is one in which 
the points of both half-planes simultaneously tend to 
infinity according to the same law. 

Let us consider the part of the upper and lower 
half-planes located at the same distance from the OY 
axis (same width 1OB  + Δl) 

When dividing the upper and lower half-planes 
into paired strips, it turns out that for the outermost 
strip of width Δl (Figure 2.2) from the upper half-
plane, there is no paired strip on the lower half-
plane. Therefore, the sought field strength E at point 
N will be equal to the strength created at this point 
by a strip of width Δl. 
 

 
 

Figure 2.2 – Field strength E


 at point N created by 
a strip of width Δl from the upper half-plane. 

 
The magnitude of the field strength E at point 

N will be equal to 
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Projection of a vector E


 onto the OX axis 
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  (2.1) 

From the constructions in Figure 2.2 it follows 

1

h

l OB





 or 1 .l OB

h


   

Substituting Δl into expression (2.1) we obtain 
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           (2.2) 

As point B2 tends to infinity, we obtain that 

1 1OB NB  and then from expression (2.2) it 

follows that 

0

1
.

2xE
h


 


                       (2.3) 

Consequently, the vector of the electric field 
intensity created by the system under consideration 
at point N is directed parallel to the half-planes and 
opposite to the OX axis. In absolute value, it is equal 

to 
0

1
.

2 h




 It is precisely this type of answer to the 

problem under consideration that is given in [1]. 
 

3 Solution with finding the sum of the 
intensities of both half-planes 

We will find only the components of the vector 

E


 parallel to both half-planes along the OX axis (in 
point 1 it was determined that E = 0). Let us 
consider the upper half-plane (Figure 3.1). 
 

 
 

Figure 3.1 – A strip of the upper half-plane of width 
dx, perpendicular to the plane of the drawing. 

 

A strip of width dx creates a field of intensity at 
point N 
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Component E1x parallel to the half-plane along 

the OX axis (projection of the vector E


 onto the OX 
axis) 
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       (3.1) 

Integrating expression (3.1) in the range from 0 
to x, we obtain 
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2 2
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20
0 0
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 (3.2) 

Similarly, for the lower half-plane, replacing h 
with h +  and  with – , we obtain 

2 2 2
0 0
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2 ( )

( )
ln .

4 ( )
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x

xdx
E

h x

h x
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
            (3.3) 

If we set the x coordinate to infinity separately 
in expressions (3.2) and (3.3), we obtain that  
E1x  – and E2x  . Therefore, it turns out that 
Ex = E1x + E2x and the uncertainty is of the form  
 – . 

However, if we write the resulting tension in 
the form Ex = E1x + E2x , then using (3.2) and (3.3), 
we obtain 

2 2 2 2

2 2
0 0

( )
ln ln .

4 4 ( )x

h x h x
E

h h

     
  

   
 (3.4) 

From (3.4) after transformations we obtain 
2 2 2

2 2 2
0

( )
ln .

4 ( )x

h x h
E

h h x

    
      

     (3.5) 

In expression (3.5) we can now let the x 
coordinate tend to infinity. 
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(3.6) 

Let us carry out transformations in expression 
(3.6) 
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   (3.7) 

Thus, the resulting electric field strength at 
point N is equal to 

0

ln 1 .
2xE

h

       
                (3.8) 

The minus sign indicates that the vector E


 is 
directed against the OX axis. 
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4 Discussion of solution options 
In the solution to the problem in paragraph 2 

(this solution is similar to that considered in [1]), the 
situation is not analyzed and it is not taken into 
account that the strip of width l, as it moves away 
from the boundary of the half-planes, also increases 
in width to infinity. It turns out that from the original 
problem with infinities we come to another problem 
with infinities (the field strength of an infinitely 
distant half-plane). And then the question arises 
about the possibility of using the formula 

0

1

2
E

r





 

for calculations, since the strip can no longer be 
considered narrow. 

From the constructions in Figure 4.1 we can 
write 
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                        (4.1) 

 

 
 

Figure 4.1 – A strip of the upper half-plane of width 
dx, located between points x1 and x2 (x2 – x1 = l) 

 
Electric field strength Ex in point N 
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Substituting the coordinate x2 from (4.1) into 
the upper limit of the integral (4.2), we obtain 

1

1

(1 / )

2 2
0

.
2

x h

x

x

xdx
E

h x


 

              (4.3) 

Let us calculate the integral (4.3) 
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Let us tend the coordinate x1 to infinity in 
expression (4.4) 
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Thus, taking into account that the strip l 
actually tends to infinity in width at x  , we 
obtain an answer corresponding to (3.8). This means 
that the answer (2.3) is inaccurate, although at 
δ << h the differences are insignificant. 

From the above it follows that when 
considering problems with infinite quantities, it is 
advisable to consider the different possibilities of 
these quantities tending to infinity and to take into 
account the nuances that arise. 
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