УДК 576.8.858.6

ВИРУСОЛОГИЯ

Действительный член АМН СССР В. М. ЖДАНОВ, действительный член АМН СССР В. Д. СОЛОВЬЕВ, Т. А. БЕКТЕМИРОВ, Ф. П. ФИЛАТОВ, В. П. КАРЕЛИН, А. Ф. БЫКОВСКИЙ

ВЫДЕЛЕНИЕ ЛЕЙКОВИРУСА ИЗ ПЕРЕВИВАЕМОЙ ЛИНИИ КУЛЬТУРЫ ЧЕЛОВЕЧЕСКИХ КЛЕТОК

Со времени опубликования работ Дмоховского (2) было показано, что многие линии перевиваемых клеток содержат вирусные С-частицы, выявляемые в электронном микроскопе. В настоящее время признается, что С-частицы являются вирионами лейковирусов, морфологически сходными с вирусами, вызывающими лейковы и саркомы млекопитающих и птиц (3). Однако до сих пор попытки выделить из таких культур вирусы оказались безуспешными, так как персистенция их в культурах не сопровождается сколько-нибудь заметным накоплением и выходом в культуральную жидкость.

В нашем распоряжении находилась перевиваемая линия культуры человеческих клеток J 96, полученная из лейкоцитов человека, больного лейкемией (4), которая применяется в вирусологической практике для выделения и культивирования разных вирусов. Эта культура состоит из

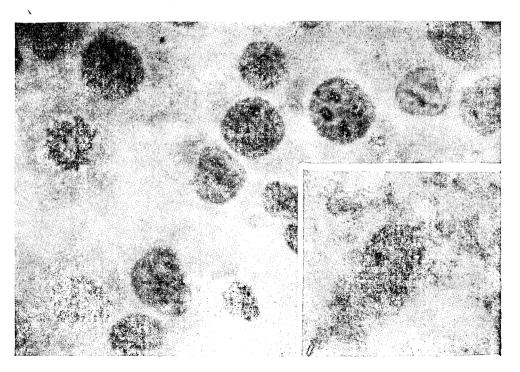


Рис. 1. a — общий вид культуры Ј 96. Гематоксилин — эозин. $1200 \times$; 6 — электронная микрофотография вирусоподобной частицы С-типа (в клетке Ј 96) $250~000 \times$. Метод ультратонких срезов

моноцитоидных клеток, образующих при перевивке монослой в матрацах

со средой 199 и 10% бычьей сыворотки (рис. 1а).

Ранее эти клетки были подробно изучены В. Д. Соловьевым с сотрудниками (1), дана их цитогенетическая характеристика и при электронномикроскопическом исследовании выявлены вирионоподобные частицы (рис. 1 б), соответствующие по морфологии типам А и С вирусов лейкоза животных. При биохимическом исследовании обнаружена фракция РНК, резистентная к соответствующему ферменту. На основании полученных

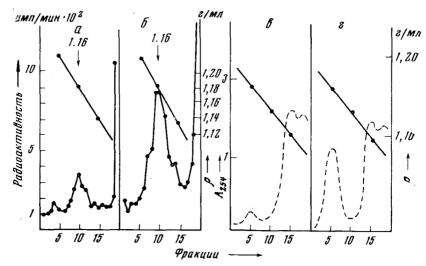


Рис. 2. Плотностное распределение радиоактивности (a, 6) и оптической плотности (s, ϵ) в культуральной жидкости после центрифугирования материала в градиентах плотности сахарозы 15—60% при 25 000 об/мин в течение 3 час. Н³-уридин (5 μ C/мл) был внесен в культуру на 24 часа до обработки ее 0,5 μ C/мл митомицина С (a) и после 24 час. обработки ее ингибитором (b). Общее количество исходной жидкости 450 мл получено с трех литровых матрацев. Материал до обработки 5-бромдезокси-уридином $(100 \ \mu$ C/мл) (a) и после 24 час. обработки ингибитором (a). Общее количество исходной жидкости 3 л. с 20 литровых матрацев.

данных, выявленные частицы предложено именовать вирусом лейкемических клеток человека.

Регулярность обнаружения вируса в клетках побудила нас к попыткам выпелить и изучить его свойства.

С этой целью культуру перевивали на матрацы со средой 199 и 10% бычьей сывороткой и выращивали в течение 3—4 дней, затем сливали культуральную жидкость, заменяли новой того же состава с добавлением к ней 0,5 µг митомицина на 1 мл или 100—200 µг 5-бромдезоксиуридина на 1 мл (5). Через сутки культуральную жидкость с 5-бромдезоксиуридином удаляли и дважды заменяли ее обычной, собирая через 3 и 5 дней.

Для получения искомого вируса каждый слив культуральной жидкости подвергали следующей обработке. Вначале удаляли клетки и крупный детрит центрифугированием при 1500 g в течение 20 мин., затем удаляли мелкий детрит центрифугированием при 15000 g в течение 30 мин. Осветленную таким образом культуральную жидкость центрифугировали в роторе 35 ультрацентрифуги Спинко Л2 или Л3 при 30 000 об/мин в течение 3—4 час. для осаждения вируса. Собранный осадок ресуспендировали в буфере ТНЭ (трис-НС1 0,01 M рН 7,4 NaCl 0,1 M, ЭДТА 0,001 M) и центрифугировали в линейном градиенте сахарозы 15—60% в роторе SW 25.1 или SW 27.1 центрифуги Спинко Л2 или Л3 при 25000—27000 об/мин. в течение 2,5—3 час., и градиент фракционировали в фракционаторе ЛКБ со спектрофотометром с проточной кюветой, установленной на длину волны 254 мµ. Плотность фракций градиентов определяли по рефракторным

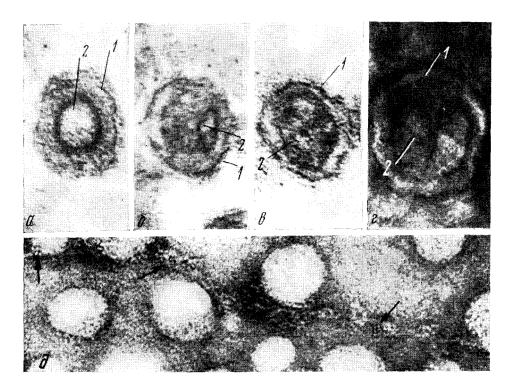


Рис. 3. Электронная микрофотография материала, находящегося во фракции градиента, указанного на рис. 2, с плотностью 1,17 г/мл. Методы ультратонких срезов $(a-\theta)$, негативного контрастирования $(z-\partial)$. a-z— вирионы (I- оболочка, 2- нуклеоид), $\partial-$ нить рибонуклеопротеида (показана стрелками) $350\,000\times$

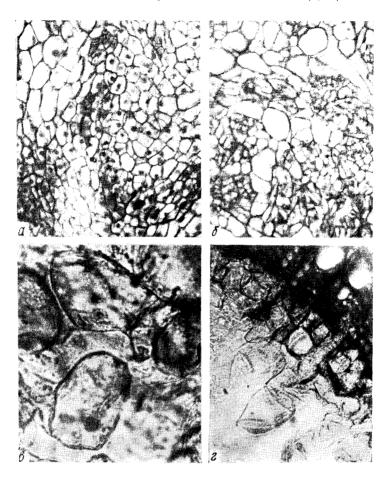


Рис. 2. Микрофотографии срезов каллусов из целого сегмента (a, δ) ; из отдельных тканей (из паренхимы— e, из ксилемы— e). a— возраст 6 дней, ув. 5×10 ; δ — возраст 15 дней, ув. 5×20 ; ϵ — возраст 3 дня, ув. 7×10

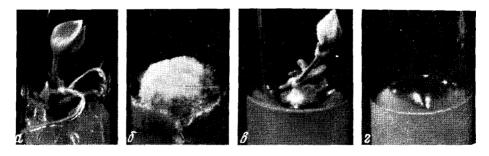


Рис. 3. Образование каллуса и ночек из разных тканей соцветия на среде с индукторами: a — из целого сегмента, b — из паренхимы, b — из коры, b — из ксилемы

пидексам, используя соответствующую номограмму, собирали фракции градиентов, соответствующие плотности 1,16 г/мл и соседним значениям, материал разводили буфером ТНЭ (рН 7,4) до плотности 1,1 г/мл, осаждали вирус в титановом роторе центрифуги Спинко при 49000 об/мин в течение 2 час., осадок ресуспендировали в небольшом количестве буфера РСБ (трис-НС1 0,01 мол/л рН 7,4, NaCl 0,1 мол/л, MgCl₂ 0,0015 мол/л) и подвергали дальнейшему исследованию. Все процедуры проводили при Ω -2°, а для хранения вируссодержащего материала помещали его в сотуды с жидким азотом (—180°).

На рис. 2 а, б представлено плотностное распределение в сахарозных грациентах материала, содержащегося в культуральной жидкости, после метки культуры Н³-уридином в течение 24 час. Как видно из рисунка, выход материала е плотностью 1,16 г/мл в культуральную жидкость сравнительно невелик и повышается после обработки культуры митомицином С.

В дальнейших опытах для получения более значительных количеств впруса использовалось 15-40 литровых матрацев с исходным количеством культуральной жидкости до 5 л. На рис. 2 в, г представлено плотностное распределение в сахарозных градиентах материала, полученного из 20 матрацев. Отчетливо видно, что в этом случае выход материала с плотностью 1,16 г/мл определяется и по оптической плотности при 254 ми, при этом обработка культур 5бромдезоксиуридином резко увеличивает количество материала с искомой плотностью.

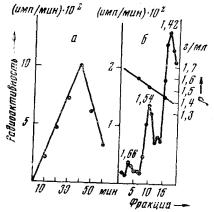


Рис. 4. а — кинетика реакции с обратной транскриптазой в очищенных вирионах, полученных из культуры; б — плотпостное распределение продуктов реакции с обратной транскринтазой в градпенте сернокислого цезия после равновесного центрифугирования в роторе SW 50 дептрифуги Спинко ЛЗ при 30 000 об/мин в течение 40 час.

Фракции с плотностью 1,16 г/мл после осаждения материала в титановом роторе были исследованы в электронном микроскопе. Как видно из рис. З, исследуемые фракции градиента содержат очищенный вирус с частицами С-типа. Часть вирионов разрушена и видны тяжи рибонуклеопротеида.

С очищенными вирионами была поставлена реакция на наличие в них обратной транскринтазы. Инкубационная смесь содержала в 1 мл: трис-HCl 50 μ moл pH 8,3, NaCl 150 μ moл, MgCl₂ 6 μ moл, дитнотрентол 2 μ moл, ненонный детергент NP40 0,00125%, ATФ, ГТФ, ЦТФ по 1 μ moл каждый, H³ ТТФ 10 μ C (удельная активность 21 С/ммол), вирус 100—200 μ r по белку. Реакцию останавливали добавлением 5 объемов 10% трихлоруксусной кислоты (ТХУ), материал осаждали на миллипоровых фильтрах, отмывали 5% ТХУ, высушивали спиртом, фильтры помещали в толуоловый сцинциллятор (РРО + РОРОР) и подсчитывали радиоактивность в жидкостном сцинцилляционном счетчике Паккард—Трикарб. На рис. 4 a по-казана кинетика реакции. Как видно реакция протекает линейно в течепие 1 часа, после чего наступает частичный распад синтезированного материала. Последнее, по-видимому, зависит от наличия в вирионах нуклеаз (7).

Некоторые особенности реакции видны из следующих данных (в пмп/мин на 1 мг белка): полная смесь 20120, полная + актиномицин Д ($20\,\mu$ г/мл) 16160, полная + рифампицин ($50\,\mu$ г/мл) 15330, полная + рибонуклеаза ($100\,\mu$ г/мл) 5410.

Реакция резко угнетается в присутствии панкреатической рибонуклеазы и менее чувствительна к актиномицину Д и рифамиицину.

Для характеристики образующихся продуктов реакцию останавливали быстрым охлаждением, нуклеиновые кислоты дважды экстрагировали фенолом, насыщенным буфером ТНЭ, осаждали двойным объемом спирта с 1,6% ацетата натрия и материал, после удаления спирта и растворения в буфере ТНЭ, исследовали в равновесных градиентах сернокислого цезия. Результаты одного из опытов представлены на рис. 46. Как видно из рисунка, продуктами синтеза является ДНК с плотностью 1,42 г/мл и ДНК—РНК гибриды с плотностью 1,54 г/мл. Часть радиоактивной метки содержится в РНК (1,66 г/мл), не изменяя плотность последней.

Для определения принадлежности исследуемого вируса к лейкозам животных были поставлены опыты иммунодиффузии препаратов вируса по общепринятой методике (⁶) с сыворотками против вирусов Раушера, Биттнера и Рауса. Во всех случаях опыты дали отрицательный результат.

Таким образом, из исследуемого клона перевиваемой линии человеческих клеток J 96, полученной из лейкоцитов человека, больного лейкемией, при применении метода 5-бромдезоксиуридинового блока ядер клеток, был выделен вирус, обладающий основными свойствами лейковирусов: вирионы имеют плотность 1,16 г/мл в сахарозе, морфологически сходны с Счастицами известных лейковирусов, в составе вирионов содержится обратная транскриптаза, продуктами реакции являются ДНК и ДНК—РНК гибриды. Отсутствие серологических реакций с сыворотками против мышиных и птичьих лейковирусов при использовании метода, выявляющего различия антигенов и человеческое происхождение исследуемой культуры, позволяет предположить, что выделенный вирус является лейковирусом человека. Вместе с тем не исключена возможность контаминации культуры лейковирусом крупного рогатого скота, вносимым при добавлении в культуральную среду бычьей сывороткой, хотя и эти вирусы до сих пор не открыты и существование их только предполагается.

Проверка этих двух возможностей является предметом наших дальней-ших исследований.

Институт вирусологии им. Д. И. Ивановского Академии медицинских наук СССР Москва Поступило 28 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Д. Соловьев, А. К. Шубладзе и др., а) В кн.: Вопр. мед. вирусологии, 2, 1971, М., стр. 3; б) Вестник АМН СССР, 6, 3 (1972). ² L. D mochowski, Texas Rep. Biol. Med., 23, 539 (1965). ³ H. Temin, Ann. Rev. Microbiol., 25, 609 (1971). ⁴ E. Osgood, J. Brooke, Blood, 10, 1010 (1955). ⁵ D. R. Lowy, W. P. Rowe et al, Science, 174, 57 (1971). ⁶ G. Geering, L. J. Old, E. A. Boyse, J. Exp. Med., 124, 753 (1966). ⁷ N. Quintell, L. Fanshier et al., J. Virol., 8, 17 (1971).