УДК 552.11

ПЕТРОГРАФИЯ

В. В. ПОТАПЬЕВ, И. Н. МАЛИКОВА, А. А. АЛАБИНА, В. М. ДОРОШ

ЯВЛЕНИЕ УНАСЛЕДОВАНИЯ ГРАНИТОИДАМИ СОСТАВА ЗАМЕЩАЕМЫХ ПОРОД (НА ПРИМЕРЕ КАРКАРАЛИНСКОГО ПЛУТОНА, ПЕНТРАЛЬНЫЙ КАЗАХСТАН)

(Представлено академиком Ю. А. Кузнецовым 6 IX 1971)

Как одно из возможных доказательств палингенного происхождения гранитов рассматривается (1-3) зависимость их состава от состава замещаемых пород. Она обнаружилась при изучении Каркаралинского плутона — типичного представителя позднегерцинских гипабиссальных гранитоидных массивов Центрального Казахстана.

Плутон глубоко эродирован и слабо задет гидротермальными процессами, что благоприятствует постановке геохимического исследования. Его вмещают отложения Рг. видимой мощностью 6—7 км, выходящие на поверхность тремя различающимися по химическому составу полями горных пород: I — терригенные породы S — D_3 ; II — их фациально замещающие андезито-базальтовые порфириты и туфы; III — липарито-дацитовые туфы и лавы C_1v — n. Характер складчатости вулканогенно-осадочных толш не меняется вблизи выходов гранитов, которые прорывают слои пород, не нарушая их залегания. Геологическими исследованиями подтверждается вывол (4) о формировании плутона в три этапа: 1) гранолиориты и кварцевые диориты (у.), содержащие большое количество останцев и ксенолитов вмещающих пород, по расположению которых местами восстанавливаются реликты складчатых структур обрамления; 2) биотитовые граниты (y_2) и фациально связанные с ними небольшие тела субщелочных гранитоидов: в аппкальных участках у₂ часто наблюдаются мелкие «теневые» ксенолиты боковых пород; 3 — аляскитовые граниты (γ_3), слагающие овальной формы крупное (500 км²) тело; в них содержатся одиночные крупные останцы вмещающих пород, но мелкие ксенолиты практически не встреча-

Таблица 1
Баланс вещества при палингенном образовании гранитоидов
Каркаралинского плутона

	Гранитоиды ү1			Гранито		Гранитоиды үз			
Сомпонент	вес. %	00. %		вес. %	oõ. %		вес. %		об. %
				Привнос		ē			
Si K F	$\frac{-}{1,27}$ $0,020$	3,95		$\begin{bmatrix} 5,03\\2,31\\0,015 \end{bmatrix}$	$\frac{5,57}{7,20}$		$7,41 \\ 2,35 \\ 0,051$		$8,20 \\ 7,33$
				Вынос					
$\begin{bmatrix} \mathbf{T_1} \\ \mathbf{Fe} \\ \mathbf{Mg} \\ \mathbf{Ca} \end{bmatrix}$	0,18 0,06	$\begin{bmatrix} -0.27 \\ 0.11 \end{bmatrix}$		0,14 2,11 0,99 1,81	$0,09 \\ 0,72 \\ 1,54 \\ 3,12$		0,17 1,86 1,05 1,83		0,10 $0,64$ $1,63$ $3,17$

Этся. Из тройной диаграммы Q—PI—Or), построенной по результатам 110 анализов, следует, это по мере перехода от γ_1 к γ_3 остав пород выравнивается и двигается в сторону тройной эвтектики, но точно ей не соответствует.

⇔1

Содержания микроэлементов во вмещающих породах и породах плучена (и г/г)

Процессы контактного метаморфизма сопровождали появление гранитоидов всех трех этапов и привели к образованию вокруг плутона общего пояса преимущественно биотитовых роговиков. микроскопом Исследования под обнаруживают усиление процессов перекристаллизации вмещающих пород вблизи выходов гранитов, выражается в интенсивном росте в роговиках порфиробласт плагиоклаза и кордиерита и пере-Местамп группировках биотита. наряду с бластическими структурами в роговиках появляются учагипидиоморфнозернистых структур, по составу имеющие обшие черты с гранитами и указывающие на тенденции перерастания процесса перекристаллизации в плавление.

Из предположения палингенного формирования плутона был рассчитан баланс вещества с учетом всего объема замещенных пород, для чего использованы данные по его глубинной части, полученгеофизическими исследованиями. Средний состав пород, замещенных илутоном, выводился с учетом их мощности в разрезе и распространения в контурах массива. Структурное картирование позволило продолжить границы толщ вмещающих пород в глубь плутона и выделить в нем поля, сформировавшиеся на месте пород различного состава. В тех случаях, когда предполагался привнос и вынос вещества, при расчетах учитывались изменения объемов. В расчетах использовано 104 химических анализа вмещающих пород и 110 анализов гранитоидов. Сравнение дисперсий проведено по F-критерию Фишера, средних по t-критерию Стьюдента. Из баланса вещества на раннем этапе формирования плутона (табл. 1)

				ļ	-u	Количе	$(n- { m количество} \ { m проб})$	(9 00							į			
	Породы	и	တ	Ni	>	Ç	Zr	Sn	Be	uZ	Pb	<u> </u>	π	Ta_	и	 ::	и	ᄄ
			Поп	Породы,	вмел	вмещающие		плутоп	но									
	Терригенные породы (поле I)	77	19,0	36,7	115,8	100,0	1100,0 184,6	1,2	1,2 2,2	111,3	111,3 17,0	16,0		46 1,49 16	919	380	89	570 520
	порфириты и туфы (поле 11) Липарито-дацитовые туфы и лавы (по-		12,4	14,9	43,1	15,3	240,0	0,1	າ 01 ວັຜ້	102,3	23,0	. .		1,13	9	247		$5\overline{20}$
		111	16,5	16,5 24,0 98,2 54,3 225,6 1,1 2,4 107,6 20,8 13,1	98,2	54,3	225,6	1,1	2,4	107,6	20,8	13,1			28	332	138	536
					Пор	Породы	плутона	она										1
177	Гранодиориты, кварцевые диориты Впотитовые граниты Аляскитовые граниты	20 38 60 80	16,0 13,7 4,0	$\begin{vmatrix} 26,0 \\ 10,6 \\ 10,6 \end{vmatrix}$	27,6 21,8 2,6	8, 8,	7 239,5 1,3 2,6 1 240,0 1,9 2,5 7 215,8 2,8 3,2	1,3 2,9 8,8	9,9,8 6,6,4	85,0 80,0 56,0	$\begin{vmatrix} 12,2\\18,9\\26,9\end{vmatrix}$	3,0	6 15 80	6 0,95 15 1,10 80 1,54	127	340 189 210	$\frac{43}{105}$	770 700 1100

следует, что средний химический состав γ_1 почти строго соответствует среднему (средневзвешенному) составу вулканогенно-осадочных пород. Исключение составляет K, количество которого возрастает на 1,27%. В участках образования γ_1 по вулканогенным породам основного состава обнаруживается избыток Mg, Ca, Fe, Ti, что компенсируется появлением здесь гнбридных пород повышенной основности и развитием в экзоконтактах процессов амфиболизации и скарнирования. На этапе образования γ_2 устанавливается привнос K (2,31%), Si (5,03%) и вынос Mg, Ca, Fe, Ti. При образовании γ_3 привнос Si возрастает до 7,41%. На всех этапах формирования илутона привносится F, а содержания Al и Na сохраняются близкими их содержаниям во вмещающих породах. Приращение объема вследствие привноса вещества достигает 10%.

Гранит	Поле	n	Co	Ni	v	Cr	Zr	Sn	Pb	Za	В
Υ2	III	21 17	4,0 3,8	11,0 10,0	27,0 $16,0$	12,0 8,0	240 240	1,8 2,1	18 20	80 80	3 3
Υз	III	$\frac{35}{25}$	$3,9 \\ 3,9$	11,5 10,1	$\frac{2,8}{2,0}$	15,0 4,9	$\frac{215}{215}$	$\begin{array}{c c} 2,6 \\ 3,1 \end{array}$	27 27	59 59	3 3

Зависимость состава гранитоидов от особенностей состава исходных пород особенно наглядно прослеживается по микроэлементам (табл. 2) *. Содержание почти всех микроэлементов в γ_1 сохраняется на уровне средних во вмещающих породах. Исключение составляет Pb, количество которого уменьшается. В γ_2 и γ_3 содержание Co, Ni, V, Cr, Zn, В значительно снижается, а Pb возрастает и в γ_3 становится соизмеримым с его количеством во вмещающих породах. Обращает на себя внимание то, что для Zr и Та, характеризующихся высоким сродством с кислородом, содержания довольно постоянны во всех группах гранитоидов и близки к таковым во вмещающих породах. Количество Sn и Be в γ_2 и γ_3 несколько увеличивается.

Особенно контрастно по содержанию микроэлементов различаются вмещающие породы полей I и III. В поле I заметно больше элементов семейства железа — V, Cr, Ni, Co. Несмотря на общее и значительное уменьшение Cr и V в γ_2 и γ_3 по сравнению с исходными породами (табл. 3), части плутона, расположенные в поле I, характеризуются более высоким содержанием этих элементов, по сравнению с полем III. Сравнение средних по t-критерию показывает значимость различия (0.95-0.99). По содержанию Ni и Co, так же как Si, Al, Fe, Ti, Ca и Mg, границы разных полей не различаются.

Изложенный материал подтверждает предположение о палингенном образовании плутона и позволяет сделать следующие выводы. Для гранитоидов раннего этапа устанавливается полная унаследованность среднего химического состава исходных (вмещающих) пород и прямая — большинства содержащих в них микроэлементов. Зависимость γ_2 и γ_3 от состава исходных пород выражена слабее, что связано с усилением привноса K, Si и F на поздних этапах процесса. Прямую унаследованность обнаруживают только элементы, характеризующиеся высоким сродством с кислородом (Al, Zr, Ta). Такие элементы, как V и Cr, для которых характерна переменность валентных состояний и равновесие между высшими и низшими формами в силикатных расплавах (6, 7), унаследованность проявляют в «угнетенной» форме: общее количество этих элементов в гранитах сни-

^{*} Та определялся колориметрическим методом по методике (5), остальные элементы — количественными спектральными методами (чувствительность анализа на Zn 0,003, Cr 0,0005, Zr, Pb, B 0,0003, Sn, V, Co, Ni 0,0001%; точность 20 отн.%).

жается, но сохраняется различие для частей плутонов, сформировавшихся на месте пород с их различным первичным солержанием.

Наблюдаемые особенности унаследования гранитоидами состава замешаемых норол нахолят объяснение в строении силикатных расплавов, которые рассматриваются $\binom{7-9}{3}$ как микрогетерогенные, структурно упорядоченные ассоциированные жидкости. Структуру расплава определяют кремнекислородные тетраэдрические комплексы, образующие анионную сетку. По силе прочности связи с кислородом все катионы дедятся $\binom{7}{2}$ на катионы-модификаторы, связь которых с кислородом преимущественно понная, что позволяет им сравнительно легко перемещаться в расплаве, и комплексообразующие катионы (стеклообразователи), имеющие с кислородом более жесткую, смешанную гетерополярную и ковалентную связь. Среди породообразующих элементов большой энергией связи с кислородом выделяются Si^{4+} и Al^{3+} (112—101 ккал. и малой— щелочные металлы (12—8). Катионы Mg^{2+} , Fe^{2+} , Ca^{2+} составляют промежуточную группу (39—31 ккал). Близко к ним примыкают Ті⁴⁺ и Fe³⁺, если рассматривать их в октаэдрической координации. Из микроэлементов высокую энергию связи имеют Zr^{4+} , V^{5+} , Cr^{6+} , W^{6+} , Ta^{4+} , Nb^{4+} , что сближает их с Si³⁺ и Al³⁺ и позволяет предполагать, что в гранитоилном расплаве эти катионы могут участвовать в формировании пространственной сети малоподвижных комплексных полимерных анионов. Катионы других металлов — Ni²⁺, Co²⁺, Pb²⁺, Zn²⁻, а также малозарядные V и Cr по силе связи с кислородом близко примыкают к группе Мд — Са и в расплаве являются типичными модификаторами. Различные формы нахождения и подвижность в силикатных расплавах катионов металлов, обладающих разной энергией связи с кислородом, имеют экспериментальное подтвержление (7) и позволяют определить причину наблюдаемых особенностей унаследования гранитоидами состава замещаемых пород на разных этацах формирования плутона. Полное совпадение составов гранодиоритов и псходных пород, очевидно, объясняется тем, что возникающая при плавлении вулканогенно-осалочных толш в условиях слабого привноса вещества магма усвоила уже существовавшее соотношение компонентов, при котором Si и Al позволяли удерживаться в структуре расплава почти всем катионам металлов, содержащимся в исходных породах. В силикатных расплавах с повышением концентрации Si степень поляризации кислорода в анионных комплексах увеличивается и соответственно уменьшается прочность связи с ними катионов металлов. Поэтому следует ожидать, что в палингенных магмах вследствие усиления притока F, а с ним K и Si должна возрастать подвижность катнонов — в общем случае тем сильнее, чем слабее энергия их связи с кислородом (12). В этом можно видеть причину частичного утрачивания биотитовыми и аляскитовыми гранитами особенностей состава замещаемых пород и проявления ее в резко угнетенной форме.

Институт геологии и геофизики Сибирского отделения Академии наук СССР Новосибирск Поступило 16 VIII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Д. С. Коржинский, Изв. АН СССР, сер. геол., № 2, 56 (1962). ² Ф. Н. Шахов, В сборн. Магматизм и связь с ним полезных ископаемых. Тр. И петрографич. совещ., М., 1960. ³ Ю. А. Кузнецов, Главные типы магматических формаций, М., 1960. ⁴ Н. Ф. Аникеева, Каркаралинский интрузивный комплекс, «Наука», 1964. ⁵ В. М. Дорош, ЖАХ, 18, 8, 861 (1963). ⁶ А. А. Аппен, Химия стекла, Л., 1970. ⁷ О. А. Есин, П. В. Гельд, Физическая химия пирометаллургических процессов, М., 1968. ⁸ О. А. Есин, Изв. АН СССР, ОХН, 1948, 561. ⁹ Л. Н. Овчинников, Изв. АН СССР, сер. геол., № 4, 22 (1959). ¹⁰ К. Н. Sun, J. Ат. Сегат. Sос., 30, 9, 277 (1947). ¹¹ В. А. Жариков, Вкп. Проблемы петрологии и генетической минералогии, 1, «Наука», 1969. ¹² В. И. Малкин, В сборн. Физическая химия расплавленных солей и шлаков, М., 1962.