УДК 517.941.92

MATEMATUKA

С. И. ТАРЛИНСКИЙ

ОБ ОДНОЙ ПОЗИЦИОННОЙ ЗАДАЧЕ НАВЕДЕНИЯ

(Представлено академиком Н. Н. Красовским 28 І 1972)

Статья продолжает исследования (1-4). Рассмотрим игровую задачу сближения— уклонения. Пусть управляемая система описывается уравнением

$$dx/dt = f(t, x, u, v), \quad x[t_0] = x_0;$$
 (1)

здесь x-n-мерный фазовый вектор, u и v — управляющие воздействия первого и второго игроков, стесненные ограничениями $u \in P, v \in Q$, где P и Q — компакты. Вектор-функция f(t,x,u,v) непрерывна по всем аргументам и удовлетворяет по x условию Липшица. Первый игрок стремптся обеспечить встречу фазовой точки x[t] с заданным замкнутым множеством M до выхода ее из заданного замкнутого множества N, второй игрок препятствует этой встрече. В соответствии с $\binom{2-4}{2}$ определим стратегию U=U(t,x) как функцию, которая позиции $\{t,x\}$ ставит в соответствие множество $U(t,x) \subset P$. Движения $x[t]=x[t;t_0,x_0,U]$ определяются $\binom{4}{2}$ как пределы ломаных Эйлера $x_{\Delta}[t]=x_{\Delta}[t;t_0,x_0,U]$, которые удовлетворяют контингенциям

$$\begin{aligned} dx_{\Delta} / dt & \in F(t, x_{\Delta}[t], u[\tau_k]), \\ u[\tau_k] & \in U(\tau_k, x_{\Delta}[\tau_k]) \quad \text{mpn} \quad \tau_k \leqslant t < \tau_{k+1}, \\ \tau_{k+1} - \tau_k \leqslant \Delta, \quad \Delta \to 0, \quad F = \overline{\text{co}} \{ f(t, x, u, v), \quad v \in Q. \end{aligned}$$

Постановка задачи не исключает, что второму игроку известен выбор управляющего воздействия u[t]. Под стратегией V_u второго игрока понимается функция, которая каждой тройке $\{t, x, u\}$ ставит в соответствие замкнутое множество $V_u = V(t, x, u) \subset Q$, причем функция V(t, x, u) полунепрерывна по включению. Движения $x[t] = x[t; t_0, x_0, V_u]$ суть пределы ломаных $x_{\Delta}[t] = x_{\Delta}[t; t_0, x_0, V_u]$, удовлетворяющих контингенциям

$$dx_{\Delta}/dt \in F_{V_u}(t, x_{\Delta}[t], u[\tau_i]),$$

где
$$\tau_k \leqslant t < \tau_{k+1}, \ \tau_{k+1} - \tau_k \leqslant \Delta, \ \Delta \to 0, \ u[\tau_i] \Subset P,$$

$$F_{V_{i,t}}(t, x, u) = \overline{\operatorname{co}}\{f(t, x, u, v)\} \quad \text{при} \ v \Subset V(t, x, u).$$

Скажем, что стратегия U обеспечивает встречу к моменту ϑ , если для всякого движения $x[t] = x[t; t_0, x_0, u]$ хотя бы при одном $t_M = t_M(x[\cdot]) \in [t_0, \vartheta]$ имеем $x[t_M] \in M$ и при этом $x[t] \in N$ при всех $t; t_0 \leqslant t \leqslant t_M$. Стратегия V_u , по определению, обеспечивает уклонение до момента ϑ , если всякое движение $x[t; t_0, x_0, V_u]$ либо не попадает на M при всех $t \in [t_0, \vartheta]$, либо выходит из N до попадания на M. Рассмотрим задачу о встрече. Для каждой функции $V_u = V(t, x, u)$ определим множества

$$G_1(t,\,x,\,V_u) = \overline{\operatorname{co}}\{f(t,\,x,\,u,\,v)\}$$
, где $u \in P,\,v \in V(t,\,x,\,u)$. Пусть теперь

$$H_1(t, x) = \bigcap_{V_u} G_1(t, x, u);$$
 (2)

здесь пересечение берется по всем полунепрерывным функциям $V_u.$

Условие 1. Каждое из множеств $H_1(t,x)$ не пусто. Справедлива

 Π е м м а 1. Вектор $h \in H_1(t,x)$ тогда и только тогда, когда для каждого п-мерного вектора l справедливо неравенство

$$\max_{P} \min_{Q} l'f(t, x, u, v) \geqslant l'h; \tag{3}$$

здесь штрих означает транспонирование.

Множества $H_1(t,x)$ суть выпуклые компакты, полунепрерывные по t,x. Введем уравнение в контингенциях

$$dz / dt \in H_1(t, z), \quad z(\tau) = w, \tag{4}$$

имеющее решения z(t) при условии 1, согласно (5). Определим множества $W_1(t,\vartheta),\,t_0\leqslant t\leqslant \vartheta$: вектор $w\in W_1(\tau,\vartheta)$ тогда и только тогда, когда существует хотя бы одно решение уравнения (4) $z(t)=z(t;\tau,w)$, для которого при каком-то $t_*\in [\tau,\vartheta]$ имеем $z(t_*)\in M$, причем $z(t)\in N$ при всех $t;\tau\leqslant t\leqslant t_*$.

 ${
m Jl}$ емма ${
m 2.}$ Каждое из множеств $W_{
m i}(t,\vartheta)$ не пусто и замкнуто.

Экстремальная стратегия U^e к множествам $W_1(t, \vartheta)$ строится по следующему правилу. Если $x \in W_1(t, \vartheta)$, то $U^e(t, x) = P$. Если $x \notin W_1(t, \vartheta)$, то выделим в $W_1(t, \vartheta)$ множество точек $w_0 = w_0(t, x)$, ближайших к точке x. В качестве $U^e(t, x)$ выберем все векторы $u^e \in P$, удовлетворяющие условию

$$\min_{Q} s_{0}'f(t, x, u^{e}, v) = \max_{P} \min_{Q} s_{0}'f(t, x, u, v)$$
 (5)

по крайней мере при одном значении $s_0 = w_0 - x$.

Теорема 1. Если начальный вектор x_0 принадлежит $W_1(t_0, \vartheta)$, то экстремальная стратегия U^e (5) обеспечивает встречу с множеством M к моменту ϑ .

Рассмотрим теперь задачу о минимаксе времени наведения движений $x[t;t_0,x_0,U]$ на M:

$$\vartheta^{0}=\min_{U}\sup_{V_{U}}\sup_{\mathbb{P}\left\{ l\right\} }\left\{ t_{M}^{0}\left(x\left[\cdot\right] \right)\right\} .$$

где $t_{M}^{\circ}(x[\,\cdot\,])$ — первый момент встречи $x[\,t\,]$ с M.

Введем функцию

$$\psi(t, x, l) = \max_{P} \min_{Q} l'f(t, x, u). \tag{6}$$

Условия 2. Функция $\psi(t, x, l)$ (6) есть функция, выпуклая по l при каждом фиксированном значении $\{t, x\}$.

Пусть

$$G_1(t, x, u) = \overline{\text{co}} \{ f(t, x, u, v) \}, \quad v \in Q.$$
 (7)

 $A \in M M = 3$. Если выполняется условие 2, то пересечение любого из множесте $G_1(t, x, u)$. $U \subseteq P$, с множеством $H_1(t, x)$ (3) не пусто.

Поставим теперь в соответствие каждому значению τ , $t_0 \leqslant \tau \leqslant \vartheta$, множество $W_1^{\alpha}(\tau,\vartheta)$ всех векторов таких, что любое движение (4) $z(t)=z(t;\tau,w)$ удовлетворяет оценке

$$\rho(z(t), M) \geqslant \alpha > 0$$
 при $\tau \leqslant t \leqslant t_{\alpha}, t_{\alpha} \leqslant \vartheta,$

где t_{α} — момент выхода z(t) из N^{α} , где N^{α} — α -окрестность N. Здесь символ $\rho(z,N)$ означает эвклидово расстояние от точки z до множества N. Предположим, что $W_1^{\alpha}(t,\vartheta)$ не пусты. Построим к множествам $W_1^{\alpha}(t,\vartheta)$ экстремальную стратегию V_u^{α} : если $x \in W_1^{\alpha}(t,\vartheta)$, то $V^{\alpha}(t,x,u) = Q$. В ином случае выделим семейство точек w_0 из $W_1^{\alpha}(t,\vartheta)$, ближайших к x. Определим $V^{\alpha}(t,x,u)$ как совокупность всех векторов v_u , удовлетворяющих, хотя

бы при одном значении $s_0 = x - w_0$, равенству

$$s_0'f(t, x, u, v_u) = \min_{\Omega} s_0'f(t, x, u, v).$$
 (8)

Используя лемму 3, можно доказать следующее предложение.

Теорема 2. Пусть $x_0 \in W_1^{\alpha}(t_0, \vartheta)$; тогда каждое из множеств $W_1^{\alpha}(t, \vartheta)$, не пусто при достаточно малых α . Если $\psi(t, x, l)$ (6) — выпуклая по l функция, то экстремальная стратегия V_u^{α} для любого движения $x[t] = x[t; t_0, x_0, V_u^{\alpha}]$ гарантирует оценку $\rho(x[t], M) \geqslant \alpha$ при $t_0 \leqslant t \leqslant t_{\alpha}, t_{\alpha} \leqslant \vartheta$, где $t_{\alpha} - m$ омент выхода x[t] из N^{α} .

Вернемся к системе множеств $W_1(t,\vartheta)$. Пусть $\vartheta^0 = \vartheta^0(t_0,x_0)$ — момент времени, когда впервые $x_0 \in W_1(t_0,\vartheta^0)$. Согласно (3), такой момент ϑ^0 (конечный или бесконечный) всегда существует. Из теоремы 1 и теоремы 2

вытекает

Теорема 3. Если выполнено условие 2 и для данных $\{t, x\}$ имеем

 $\vartheta^{\scriptscriptstyle 0} < \infty$, то значение $\vartheta^{\scriptscriptstyle 0}$ является минимаксом времени до встречи.

Действительно, поскольку $x_0 \in W_1(t_0, \vartheta^0)$, то, согласно теореме 1, экстремальная к $W_1(t, \vartheta^0)$ стратегия обеспечивает встречу к моменту ϑ^0 . С другой стороны, если $\vartheta < \vartheta^0$, то x_0 не принадлежит $W_1(t_0, \vartheta)$. Следовательно, существует такое $\alpha = \alpha(\vartheta)$, что для любого движения (4) $z(t) = z(t; t_0, x_0)$ справедливо неравенство

$$\rho(z(t), M) \geqslant \alpha, \quad t_0 \leqslant t \leqslant t_\alpha,$$

где t_{α} — момент времени, когда впервые $\rho(z(t_{\alpha}), N) \geqslant \alpha$. Следовательно, можно построить множества $W_1^{\alpha}(t, \vartheta)$ и к ним стратегию (8), которая, согласно теореме 2, обеспечивает уклонение до момента времени ϑ . Теорема 3 доказана.

Подвергнем задачу инверсии и отбросим ограничение $x \in N$. Скажем, что стратегия $V_u = V(t, x, u)$ обеспечивает сближение с M к моменту ϑ , если для каждого движения $x[t] = x[t; t_0, x_0, V_u]$ хотя бы при одном значении $t_M(x[\cdot]) \in [t_0, \vartheta]$ имеем $x[t_M] \in M$. Стратегия U = U(t, x) обеспечивает уклонение до момента ϑ , если всякое движение $x[t] = x[t; t_0, x_0, U]$ не попадает на M при $t \in [t_0, \vartheta]$. Пусть

$$G_{2}(t, x, u) = \overline{co} \{f(t, x, u, v)\}, \quad v \in Q,$$

$$H_{2}(t, x) = \bigcap_{u} G_{2}(t, x, u), \tag{9}$$

где пересечение берется по всем $u \in P$.

Предположим, что каждое из множеств $H_2(t,x)$ не пусто и введем уравнение

$$dy / dt \subseteq H_2(t, y), \quad y(\tau) = w. \tag{10}$$

Скажем, что $w \in W_2(\tau, \vartheta)$ тогда и только тогда, когда существует хотя бы одно решение уравнения (10), $y(t) = y(t; \tau, w)$, попадающее на M к моменту ϑ . Экстремальная стратегия V_u^e строится так же, как и выше V_u^a , с той лишь разницей, что множества $W_1^a(t, \vartheta)$ заменяются на $W_2(t, \vartheta)$.

Теорема 4. Если $x_0 = W_2(t_0, \vartheta)$, то экстремальная стратегия V_u^e обеспечивает встречу движений $x[t; t_0, x_0, V_u^e]$ с множеством M к моменту времени ϑ .

Обозначим
$$G_2(t, x, V_u) = \overline{\text{co}} \{ f(t, x, u, v) \}$$
, где $v \in V(t, x, u), u \in P$,
$$D(t, x, V_u) = G_2(t, x, V_u) \cap H_2(t, x). \tag{11}$$

Условие 3. При всяком $\{t,x\}$ и при любом выборе полунепрерывной функции V_u множество D не пусто. Определим систему множеств $W_2^{\alpha}(\tau,\vartheta)$ условнем: $w \in W_2^{\alpha}(\tau,\vartheta)$ тогда и только тогда, когда для любого движения (11) $y(t) = y(t,\tau,w)$ справедливо неравенство

$$\rho(y(t), M) \geqslant \alpha > 0, \quad t \in [\tau, \vartheta].$$

Экстремальная стратегия U^{α} строится так же, как выше U^{e} , но с заменой $W_{1}(t,\vartheta)$ на $W_{2}^{\alpha}(t,\vartheta)$.

Теорема 5. Пусть множества $D(t, x, V_u)$ (11) не пусты $u x_0 \in W_2^a(t_0, \vartheta)$.

Tогда стратегия U^{α} гарантирует оценку

$$\rho(x[t], M) \geqslant \alpha, \quad t \in [t_0, \vartheta], \quad x[t] = x[t; t_0, x_0, U^{\alpha}].$$

Обозначим через $\vartheta_0 = \vartheta_0(t_0, x_0)$ момент времени, когда впервые $x_0 \in W_2(t_0, \vartheta_0)$. Справедлива

Теорема 6. Если выполняется условие 3, то для любого значения ϑ , $\vartheta < \vartheta_0$, существует стратегия U, обеспечивающая уклонение до момента времени ϑ .

Величину $\vartheta_0 = \vartheta_0(t_0, x_0)$ из теоремы 4 и теоремы 6 назовем максимином времени до встречи.

Приведем пример, для которого выполняются условие 2 и условие 3. Рассмотрим управляемое движение $x[t] = \{x_1, x_2, x_3, x_4\}$ вида

$$dx_1/dt = x_3, \quad dx_2/dt = x_4,$$
 $dx_3/dt = f_1(t,x) + u_1\cos v_3 + u_2\sin v_3,$
 $dx_4/dt = f_2(t,x) - u_1\sin v_3 + u_2\cos v_3, \quad x[t_0] = x_0,$

где $u_1^2 + u_2^2 \leqslant \mu^2$; $v_1^2 + v_2^2 \leqslant v^2$; $|v_3| \leqslant \alpha < 1/2\pi$, причем $\mu \cos \alpha - v > 0$. Заметим, что если x_0 не принадлежит M, то минимакс времени наведения ϑ^0 на M оказывается строго большим соответствующего максиминного результата ϑ_0 .

Автор выражает благодарность акад. Н. Н. Красовскому за предложенную задачу и внимание к работе.

Уральский государственный университет им. А. М. Горького Свердловск

Поступило 17 XII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. С. Понтрягин, ДАН, 174, № 6, 1278 (1967). ² Н. Н. Красовский, А. И. Субботин, ПММ, 34, № 6, 1022 (1970). ³ Н. Н. Красовский, А. И. Субботин, ПММ, 35, № 1, 110 (1971). ⁴ Н. Н. Красовский, ДАН, 201, № 2, 270 (1971). ⁵ А. Ф. Филиппов, Математич. сборн., 51, № 1, 101 (1960).