УДК 547.420 ХИМИЯ

в. ф. миронов, о. м. радькова, в. д. Шелудяков, в. в. щербинин

СИНТЕЗ ГЕМ-ДИФТОРЦИКЛОПРОНИЛ-И _У-ГЕМ-ДИФТОРАЛЛИЛХЛОРСИЛАНОВ ПРИ ТЕРМОЛИЗЕ ДИФТОРХЛОРМЕТАНА В ПРИСУТСТВИИ ВИНИЛХЛОРСИЛАНОВ

(Представлено академиком Г. А. Разуваевым 19 VI 1972)

Известен способ получения гем-дифторциклопропилтриалкилсиланов (1, 2), заключающийся в действии на алкенилтриалкилсиланы смеси иодистого натрия с трифторметильными производными олова или ртути. Однако эти источники дифторкарбена малодоступны и, кроме того, исключают возможность получения аналогичных соединений с функциональными группами у атома кремния, например хлора.

Нами найден более простой и универсальный метод синтеза гем-дифторциклопропилзамещенных силанов, в том числе и с атомами хлора у атома кремния, основанный на пропускании через нагретую до 485—570° С пустую кварцевую трубку стехнометрической смеси какого-либо винилсилана и дифторхлорметана (фреон-22). В наших ранних аналогичных опытах (3) отмечалось образование псключительно у-гем-дифтораллилсиланов (II), а промежуточное образование гем-дифторциклопропилсиланов (I) было только предположено. В найденных нами теперь условиях проведения реакции последние соединения образуются в подавляющих и препаративных количествах:

ативных количествах:
$$\begin{array}{c} \text{Cl}_n \text{Me}_{3-n} \text{SiCH} = \text{CH}_2 \xrightarrow{F_2 \text{CHCl}} \rightarrow F_2 \text{C} : + \text{HCl} \\ 485 - 570^{\circ} \text{ C} \end{array} \\ \text{Cl}_n \text{Me}_{3-n} \text{SiCH} = \text{CH}_2 \xrightarrow{\text{CH}_2 \text{CH}} \xrightarrow{485 - 570^{\circ} \text{C}} \\ \text{Cl}_n \text{Me}_{3-n} \text{SiCH}_2 \text{CH} = \text{CF}_2 \\ \text{CI}_n \text{Me}_{3-n} \text{SiCH}_2 \text{CH} = \text{CF}_2 \\ \text{(II)} \\ \text{a) } n = 0, \text{ 6) } n = 1, \text{ B) } n = 2, \text{ r) } n = 3. \end{array}$$

Оптимальные условия образования соединений I — температура 485— 505° и время контакта ~ 5 сек. В этом случае выход I достигает 10—17% за один проход и 85—95% на вступивший в реакцию винилсилан. Выход II колеблется в пределах 2—20%. Повышение температуры до 550— 570° снижает выход I и повышает выход II. При температурах 570— 580° выход I резко падает, а при 590— 610° происходит закоксовывание трубки и удается идентифицировать только линейный продукт II. При изменении времени контакта с 5 до 30 сек. выход продуктов I и II существенно не изменяется, а увеличивается лишь конверсия винилсилана. Индивидуальные соединения I при пропускании их через нагретую до 550° кварцевую трубку не претерпевают изменений, а выше 590° почти полностью коксуются. В интервале 550— 590° наблюдаются следующие превращения гемдифторциклопропилсиланов I:

$$\begin{array}{c|c} \text{Cl}_{n}\text{Me}_{3-n}\text{SiCH}\text{-}\text{CH}_{2} & \xrightarrow{550-590^{\circ}\text{ C}} \\ \hline \\ \text{CF}_{2} & \xrightarrow{} \text{Cl}_{n}\text{Me}_{3-n}\text{SiCH}\text{-}\text{CH}_{2} \text{CH}_{2} \text{CH}_{3} \text{(III) } (8,0\%) \\ \hline \\ & \xrightarrow{} \text{Cl}_{n}\text{Me}_{3-n}\text{SiCH}\text{-}\text{CH}_{2} & \text{(III) } (26,0\%). \end{array}$$

Таблица 1

Полученные соединения	Выход продукта, %					MR_D^*			Найдено, %			Вычислено, %		
	на всту- пивший в реакцию винилси- лан	от теоре- тическо- го	Т. кип., °С	n_D^{20}	d_4^{20}	най- дено	вычисле- но	Брутто- формула	Si	F	GI	Si	F	C1
							1				Ė			
Ia. (CH ₃) ₃ SiCH—CH ₂ —CF ₂	87,4	18,0	9999,5	1,3851	0,9276	38,04	37,98	$\mathrm{SiC_6H_{12}F_2}$	18,78	24,81		18,66	25,28	_
16. Cl (CH ₃) ₂ SiCH—CH ₂ —-CF ₂	84,8	18,4	118—119	1,4060	1,1054	37,89	37,74	SiC ₅ H ₉ ClF ₂	16,50	22,08	20,31	16,43	22,25	20,76
IB. Cl ₂ CH ₃ SiCH-CH ₂ -CF ₂	94,0	16,0	127—128	1,4149	1,2794	37,40	37,50	SiC ₄ H ₆ Cl ₂ F ₂	14,80	19,20	36,23	14,68	19,88	37,10
Ir. Cl ₃ SiCH—CH ₂ —CF ₂	89,9	16,4	121—122	1,4185	1,4420	37,09	37,26	SiC ₃ H ₃ Cl ₃ F ₂	13,41	17,30	49,81	13,26	17,96	50,28
Ha. (CH ₃) ₃ SiCH ₂ CH=CF ₂	88,0	19,0	90	1,3836	0,9046	38,81	38,60	SiC ₆ H ₁₂ F ₂	18,55	24,71	_	18,66	25,28	-
HB. CH ₃ Cl ₂ SiCH ₂ CH=CF ₂	92,0	18,0	117—118	1,4107	1,2429	38,15	38,13	SiC ₄ H ₆ Cl ₂ F ₂	14,80	19,11	36,45	14,68	19,88	37,10

^{*} Вычислено с использованием величины групповой рефракции гем-дифторциклопроцильного радикала, связанного с кремнием, принятой равной 15,27 мл, вместо 14,88 мл, определенной по связевым величинам (4).

В отличие от циклических соединений I, изомерные им линейные II устойчивы при кратковременном нагревании до 600°, а выше 600° начинают образовываться соответствующие винилсиланы III. При 680° в случае, например, γ-гем-дифтораллилметилдихлорсилана (IIв) содержание метилвинилдихлорсилана за один проход составило ~ 10%. Дальнейшее повышение температуры приводит к интенсивному коксообразованию.

Из приведенных данных следует, что пиклические продукты I менее термически устойчивы, чем линейные II, и при пиролизе перегруппировываются в линейные. Большая устойчивость линейных продуктов отмечается и под электронным ударом, что подтверждается масс-спектромет-

рическими данными.

Строение полученных соединений I и II подтверждено и.-к., у.-ф. спектрами, спектрами к.-р., я.м.р. Н¹, я.м.р. Г¹⁹ и масс-спектрами. В протонных спектрах всех изученных соединений I, кроме Iг, имеется дублет от метильных групп при атоме кремния, расщепленный на одном из ядер фтора. В спектрах всех соединений наблюдается также сложный мультиплет АВС-части спиновой системы АВСХҮ, находящийся в области 1—2 м.д., характерный для протонов циклопропанового кольца.

В спектрах я.м.р. F^{19} наблюдаются сигналы XY-части этой системы, которые соответствуют двум неэквивалентным ядрам фтора, находящимся соответственно в цис- и транс-положениях относительно силильной групны. Эти спектры состоят из четырех мультиплетов, тонкая структура каждого из которых обусловлена спин-спиновой связью с циклопропановыми

протонами.

Анализ этой спиновой системы будет приведен в одной из следующих публикаций.

В н.-к. спектрах линейные изомеры II отличаются от циклических I наличием мощного поглощения в области 1744—1748 см⁻¹, обусловленного валентными колебаниями С=С-связи. Валентные колебания С—Н пепредельного фрагмента характеризуются двумя полосами при 3010—3030 и 3050—3060 см⁻¹.

Получение гем-дифторациклопропилметилдихлорсилана Ів. Через кварцевую трубку диаметром 28 мм, нагретую до 505°, электропечью длиной 1000 мм пропускают ток фреона-22, который предварительно барботируют через нагретый до 75° метилвинилдихлорсилан (эти условия обеспечивали стехиометрический состав реагирующих компонентов) со скоростью 11,2 л/час (0,5 моля) в течение 2 часов. При перегонке полученного конденсата получают 31 г (выход 16% от теоретического или 82,4% в пересчете на невозвращенный метилвинилдихлорсилан) Ів с т. кип. 127—128°. Так же было получено 4 г (2% от теоретического) у-гем-дифтораллилметилдихлорсилана ІІв с т. кип. 117—118°. В аналогичных условиях получены остальные продукты І и ІІ, свойства которых приведены в табл. 1.

Пиролиз гем-дифторциклопропилметилдихлорсилана (Iв). Через нагретую до 575° кварцевую трубку (d=12 мм, l=250 мм) пропускают в токе азота 5,7 г Ів. В полученном конденсате (3,9 г) по данным г.ж.х. обнаружено исходного Ів 45%, ІІв 8% и метил-винилдихлорсилана 26%. Пиролиз 5,7 г ү-гем-дифтораллилметилдихлорсилана (ІІв) при 680° привел к образованию смеси, состоящей из 40% исходного ІІв и 10% винилметилдихлорсилана.

Поступило 24 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ D. Seyferth, D. Dertousos et al., J. Ort. Chem., 32, 2980 (1967). ² D. Seyferth, S. P. Hopper, J. Organometal. Chem., 26, C62 (1971). ³ B. Ф. Миронов, Н. Г. Максимова, В. Д. Шелудяков, Авт. свид. СССР № 282321 от 25 июля 1969. Бюдл. изобр. № 30, 34 (1970). ⁴ T. К. Гар, В. Ф. Миронов, Расчет молекулярных рефракций соединений элементов IVB группы периодической системы. М., 1971.