УДК 547.1'3+546.11.2

ХИМИЯ

Член-корреспондент АН СССР Д. Н. КУРСАНОВ, В. Н. СЕТКИНА, А. И. ХАТАМИ, М. Н. НЕФЕДОВА

СКОРОСТЬ И ОРИЕНТАЦИЯ ПРИ КИСЛОТНОМ ВОДОРОДНОМ ОБМЕНЕ ПРОИЗВОДНЫХ ФЕРРОЦЕНА С ЭЛЕКТРОНОАКИЕНТОРНЫМИ ЗАМЕСТИТЕЛЯМИ

Количественные данные о влиянии электроноакцепторных заместителей в ферроцене при электрофильном замещении ограничены такими сравнительно слабыми заместителями, как Cl и Ph (1-3). В настоящей работе исследованы скорость реакции и ориентация при кислотном водородном обмене производных ферроцена с сильными электроноакцепторными заместителями: метилового эфира ферроценкарбоновой кислоты (ФСООМе) и

фенилферроценилсульфона (ΦSO_2Ph) .

Ранее (4) было установлено, что СООМе-группа в ферропене резко замедляет обмен водорода циклопентадиенильных колец; общая скорость обмена этого соединения с CF₃COOD составляет 1·10⁻³, если за единицу принять скорость обмена незамещенного соединения. Группа PhSO₂ замедляет обмен в еще большей степени: измеримая скорость реакции достигается только цри повышении кислотности среды добавлением к CF_3COOD комплексной кислоты $BF_3 \cdot D_2O$. Измерив в тех же условиях константу скорости обмена ФСООМе и принимая для этого соединения $k_{\text{отн}} = 1 \cdot 10^{-3}$, мы нашли, что скорость обмена $\Phi \text{SO}_2\text{Ph}$ относительно ферроцена составляет $1 \cdot 10^{-4}$. Такой пересчет является довольно грубым приолижением, так как $k_{ ext{orm}}$ могут изменяться с изменением среды, однако к этому приему приходится прибегать при изучении соединений, сильно различающихся по реакционной способности. Возможная неточность полученных значений $\overline{k}_{ ext{orm}}$, конечно, не может поставить под сомнение вывод, что сильные электроноакцепторные заместители резко уменьшают общую скорость кислотного водородного обмена циклопентадиенильных колец ферроцена.

Наиболее интересные и неожиданные, на наш взгляд, результаты были получены при определении скоростей замещения в разных положениях молекулы ферроцена, несущей электроноакцепторный заместитель. Оказалось, что различие в скоростях обмена свободного и замещенного колец очень мало по сравнению с общим изменением скорости обмена при введении заместителя. В ФСООМе отношение скоростей обмена свободного и замещенного колец составляет ~ 3 , в ФЅО₂Ph ~ 10 . Аналогичный результат получен и при исследовании ферроценилметилсульфона (ФЅО₂Ме). Это соединение обменивается в смеси С F_3 СООD — $BF_3 \cdot D_2$ О медленнее, чем ФЅО₂Ph (k скорости не измерена). Отношение скоростей обмена свободного и замещенного колец для него также составляет ~ 10 . Невелико также и различие между двумя положениями замещенного кольца. Так, в ФСООМе факторы парциальной скорости f составляют $f_2 = 0.7 \cdot 10^{-3}$, $f_3 = 0.45 \cdot 10^{-3}$. Таким образом, вывод о слабо выраженном ориентирующем влиянии заместителей в ряду ферроцена (2) оказывается справедливым и для сильных электроноакценторных заместителей.

Обращает на себя внимание то обстоятельство, что в ФСООМе и ФЅО₂Рh протоны замещенного кольца, дающие сигнал в более слабом поле, обмениваются быстрее, чем протоны, дающие сигнал в более силь-

ном поле. Аналогичное наблюдение было сделано и при изучении замещения в метоксиферроцене $\binom{2}{5}$.

1. Исследованные вещества синтезированы по описанным методикам: $\Phi COOMe$ (6) ΦCO_2Ph и ΦSO_2Me (7). Образцы после обмена очищали хроматографией на Al_2O_3 , чистоту контролировали элементным анализом.

2. Все кинетические опыты по водородному обмену проводили при 25° в атмосфере N_2 . Молярное соотношение вещество : CF_3COOD : $BF_3 \cdot D_2O$ составляло 1,6 : 105 : 1. Результаты приведены в табл. 1.

Таблица 1

Соединение	Продолжитель- ность опыта, мин.	Степень замещения (% от равновесия)	k·105, ceK-1	k _{cp} ⋅10 ⁻⁵ , ce _R -1	
ФСООМе	90 90 420	17,3 18,3 23,4	3,69 3,73 3,69		
ΦSO₂Ph	120 120 240 300 480	$\begin{array}{c} 23,75\\ 3,5\\ 5,1\\ 7,9\\ 10,1 \end{array}$	0,39 0,37 0,48 0,40	0,41	

3. Количество дейтерия, вступившего в 2 и 3 положения замещенного кольца и в свободное кольцо (положение 1'), определяли по уменьшению интенсивности сигналов соответствующих протонов в спектре п.м.р. образцов, выделенных после обмена.

Спектры п.м.р. ФСООМе снимали в ССІ₄. Трехпротонный синглет Ме-группы (δ 3,74) служил стандартом для определения интенсивности сигналов. Сигнал в наиболее слабом поле относили к протонам в положении 2 (8). Для сульфонов единственным подходящим растворителем оказался бензол, так как различие в химических сдвигах 1′-, 2- и 3-протонов в этом анизотропном растворителе значительно больше, чем в ССІ₄, СНСІ₃ и др. Отнесение сигналов 2- и 3-протонов затруднительно в связи с тем. что расположение их в обоих сульфонах, по-видимому, не определяется электронными эффектами заместителя. Так, в ССІ₄, СНСІ₃, С₆Н₆, СS₂ один из сигналов замещенного кольца расположен в более сильном поле, чем сигнал незамещенного кольца; а в ацетоне, например, сигнал незамещенного кольца лежит в наиболее сильном поле. Применение С₆D₆ в случае

Таблица 2

Соединение	δ, м.д.	Колич. атомов D в дан- ном положении		~	f · 103	$f_{1'}/f_{2+3}$
		опыт 1	опыт 2	α _{cp}	1,100	7177243
ФСООМе	4,12 (5H) 4,67 (2H)	1,60 0,30	$3,0 \\ 0,55 \\ 0,55$	0,77 0,14	1,5	2,8
$\Phi SO_{2}Ph$	4,26 (2H) 4,44 (5H) 4,62 (2H)	$ \begin{array}{c} 0.15 \\ 3.6 \\ 0.25 \end{array} $	0,35 4,5 * 0,45	0,09 0,93 ** 0,07	0,45	10,6***
$\Phi \mathrm{SO}_2\mathrm{Me}$	3,92 (2H) 4,27 (5H)	$^{0,0}_{3,0}$	0,25 $4,0$	0,92 **		10,0
	4,56 (2H) 4,05 (2H)	$\substack{0,1\\0,15}$	$0,2 \\ 0,25$	0,08		9,2

^{*} Соответствует рассчитанному для равновесия.

^{**} Из опыта 1.

*** Как отмечалось выше, эта величина менее достоверна, чем для ФСООМе, так как обмен в свободном кольце приближается к равновесию.

ФSO₂Ph позволило использовать в качестве стандарта для определения интенсивности сигналов мультиплет (δ 7,85—8,10, 2H), относящийся, повидимому, к мета-протонам фенильного кольца ФSO₂Ph. Однако воспроизводимость результатов в этом случае хуже, чем при использовании в качестве стандартного сигнала синглета; количества D, меньшие чем 0,2 атома, не удается определить с уверенностью.

Поэтому наличие D в замещенном кольце $\Phi SO_2 Ph$ оказалось возможным обнаружить только на той стадии, когда обмен в свободном кольце достигает значительной глубины (80% от равновесия) и скорость его уменьшается. Поэтому для $\Phi SO_2 Ph$ не рассчитывали f-факторы парциальной скорости.

Для ФСООМе f рассчитывали по формуле $f = k_{\text{отн}} \cdot \alpha / n$, где α — доля, которую составляет D в данном положении от общего количества D в молекуле, n — отношение числа водородов в данном положении к числу во-

дородов в незамещенном ферроцене.

Отношение скоростей обмена в свободном и замещенном кольцах соответственно $f_{1'}/f_{2+3} = \alpha_{1'}n_{2+3}/\alpha_{2+3}n_1$.

Институт элементоорганических соединений Академии наук СССР Москва Поступило 22 V 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ M. Rosenblum, W. G. Howells, J. Am. Chem. Soc., 84, 1167 (1962). ² J. A. Mangravite, T. G. Traylor, Tetrahedron Letters, № 45, 4458 (1967). ³ Д. Н. Курсанов, В. Н. Сеткина и др., ДАН, 192, 339 (1970). ⁴ М. Н. Нефедова, Д. Н. Курсанов и др., ДАН, 166, 374 (1966). ⁵ S. McVey, J. G. Morrison, P. L. Pauson, J. Chem. Soc. C, 1967, 1847. ⁶ L. Wolf, M. Beer, Naturwiss., 44, 442 (1957). ⁷ В. А. Нефедов, ЖОХ, 36, 122 (1966); 38, 2184 (1968). ⁸ Г. Г. Дворянцева, С. А. Портнова и др., ДАН, 160, 1075 (1965).