УДК 541.64;547.332;539.89

БИОХИМИЯ

Член-корреспондент АН СССР В. И. ГОЛЬДАНСКИЙ, Т. Н. ИГНАТОВИЧ, М. Ю. КОСЫГИН, П. А. ЯМПОЛЬСКИЙ

ПОЛИКОНДЕНСАЦИЯ α -L-АЛАНИНА ПОД ДЕЙСТВИЕМ УДАРНЫХ ВОЛН

В общей проблеме происхождения жизни далеко не все вопросы добиологической эволюции могут считаться выясненными. В настоящее время можно считать установленным, что под действием проникающего излучения, электрического разряда, ультрафиолетовой радиации и тепла в газах первичной атмосферы образовывались такие молекулы, как аминокислоты, сахара и т. д. $\binom{1}{2}$.

Значительно менее ясно, как осуществляется на следующем этапе химической эволюции соединение различных аминокислот в полимерные молекулы (3, 4).

В работе (5) было выдвинуто предположение о том, что ударные волны (у.в.), возникающие в конденсированном веществе при соударении метеоритов с новерхностью Земли, могут рассматриваться как один из источников энергии для первичной химической эволюции. В указанной работе было продемонстрировано образование молекул с пептидными связями при воздействии у.в. на смеси твердых аминокислот* (глицина и тирозина) с силикагелем. В отсутствие силикагеля поликонденсация не имела места, что также подтверждается данными работы (6), где изучено действие у.в. на глицин и алапин.

Настоящая работа была поставлена с целью более подробного исследования продуктов поликонденсации, образующихся при воздействии у.в. на а-аминокислоты. Образцы готовили прессованием высущенной под вакуумом смеси а-L-аланин («Reanal») с равным по весу количеством силикагеля («Stale»). С целью выявления роли воды в некоторых опытах (№ III, VI, VII) смесь увлажняли, помещая ее в эксикатор над водой. Обработку образцов действием у.в. длительностью 5—7 исек. с амплитудами $P=120,\ 350$ и 500 кб при начальной температуре 20° проводили, используя методику (7). Относительная деформация образцов после опытов (увеличение диаметра) была ~15%. После взрывного эксперимента стальные ампулы, солержащие образец, вскрывали при охлаждении жилким азотом на токарном станке. Извлеченный образец измельчали и помещали в 20% уксусную кислоту. Часть продуктов реакции переходила при этом в раствор (растворимая фракция), часть оставалась адсорбированной на силикагеле (нерастворимая фракция). Судя по н.-к. спектрам, в области деформационных колебаний N—Н и валентных колебаний С=О (1500— 1700 см-1) эти фракции близки по составу. Наблюдается сходный характер изменения спектров обеих фракций и спектра поли-L-аланина («Reanal») по сравнению со спектром мономерного аланина. Отметим, например, смещение полосы валентных колебаний С=О в сторону больших длин волн (с 1646 до 1680 см-1), что соответствует положению полосы амид I в полипептидах (8) (рис. 1).

^{*} Возможная роль у.в. в первичном синтезе упоминалась в работах (2, 4), где, однако, рассмотрены лишь высокотемпературные процессы в газах за фронтом у.в., тогда как в нашем случае речь идет о действии у.в. на конденсированные вещества.

Растворимая фракция была более подробно исследована следующими методами: хроматографирование в тонком слое, аминокислотный анализ, препаративное фракционирование на бумаге, масс-спектрометрический анализ. Содержание аминокислоты определялось с помощью аминокислотного анализатора Unichrom фирмы Весктапп до и после гидролиза. Гидролиз в течение 24 час. (105°, избыток 5,7N HCl) приводил к увеличению содержания аминокислоты во всех опытах при 350 и 500 кб. В контрольных опытах, моделирующих действие остаточного нагрева на реакционную смесь, никаких продуктов поликонденсации не было обнаружено (табл. 1).

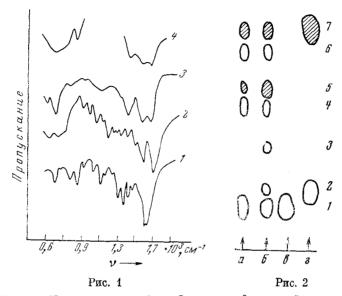


Рис. 1. И.-к. спектры. $I-\alpha$ -L-аланин, 2-иоли-L-аланин (м.в. > 3000), 3— растворимая фракция (опыт III), 4— нерастворимая фракция (опыт III), силикагель с адсорбпрованными продуктами реакции; в пучке сравнения чистый силикагель в КВг. (Спектры снимались на UR-20 в таблетках КВг)

Рис. 2. Тонкослойная хроматограмма растворимой фракция (целлюлоза MN-300, система пиридин — n-бутанол — уксусная кислота — вода, 10:15:3:12). a — опыт II (см. табл. 1), δ — опыт III; s — α -L-аланин, s — циклический (пятно 7) и линейный димеры аланина

Таким образом, можно сделать заключение, что воздействие у.в. достаточно большой амилитуды на смесь α -L-аланина и силикагеля всегда приводит к образованию полипептидов.

Как видно из хроматограммы в тонком слое, в растворимых фракциях образцов содержатся линейные и циклические продукты реакции (рис. 2). Линейным продуктам реакции соответствуют на хроматограмме пятна 1—4, 6 (окрашиваются нингидрином), циклическим — заштрихованные пятна 5 и 7, проявляющиеся при действии КЈ на хлорированную хроматограмму (9).

Из опытов со свидетелями следует, что пятно 1 принадлежит мономеру аланина, а цятно линейного димера расположено между пятнами 1 и 2. Очевидно, последнее соответствует низкомолекулярным олигомерам. Циклическому димеру а-аланина принадлежит пятно 7. Так как на хроматограммах «сухих» образцов (опыты 11, IV, V) интенсивность пятен 5 и 7 больше, а пятно 2, близкое пятну димера, отсутствует, можно предположить, что сорбированная вода уменьшает вероятность образования дикетопиперазина.

Возникает вопрос, каким продуктом реакции принадлежат пятна 3, 4, 6. Препаративная хроматография на бумаге (ватман № 3) позволила разделить компоненты растворимой фракции (опыт III). Так как содержание аланина увеличивается после гидролиза в каждой из фракций (в том числе во фракциях 3, 4 и 6), можно считать доказанным, что пятна на хроматограммах соответствуют продуктам поликонденсации аланина. Выход циклического димера аланина значительно превышает выход линейных полипептидов (табл. 2).

 $\begin{tabular}{lllll} T аблица & 1 \\ \begin{tabular}{lllll} A блица & 1 \\ \$

Номер опыта	Р, кб	Содержание аланина в растворимой фракции (% от исходного)	
		до гидролиза	после гидролиза
I II III	120 500 500	14,5 0,4 10,7	14,5 3,9 37,6
IV V VI	350 500 500	$ \begin{array}{c} 2,3 \\ 0,9 \\ 0.9 \end{array} $	17,3 6,4 9,0
VII Контрольные опыты, 100, 135, 170, 200°, 20 мин.	500	2,9	6,0

Таблица 2 Состав растворимой фракции (опыт III)

Номер фракции (пятна); (свидетель)	Реакция с нингидри- ном	Реакция с КЈ	Содержание аланина в рмол.	
			до гидролиза	после гидролиза
1; (аланин) 2 3 4 5 6 7; (циклический димер аланина)	+ + + + - +	+++++++++++++++++++++++++++++++++++++++	22,4 1,05 Следы 0,0 0,0 0,0 0,0	28,0 4,85 1,50 0,70 1,30 0,75 22,0

Для выяснения вопроса об образовании под действием ударного сжатия продуктов со степенью поликонденсации больше двух был проведен масс-спектрометрический анализ растворимой фракции в образцах III и VI (масс-спектрометр МХ-1307).

В масс-спектрах N-деканоильных производных метиловых эфиров продуктов реакции, полученных по методике (10), имеются пики с m/e = 198, 269, 340, 411, соответствующие фрагментам [De(ala)_nNH — CH(CH₂)]⁺, где n = 0, 1, 2, 3, a De = C₂H₁₂CO и с m/e = 155, 226, 297, 368, 439, соответствующие фрагментам [De(ala)_n]⁺, где n = 0, 1, 2, 3, 4. В спектрах, снятых при температурах 20, 50, 70, 100 и 150°, имеется молекулярный пик производного мономера De(ala) OMe, m/e = 257, но отсутствуют молекулярные пики производных ди-, три- и тетрапептидов аланина, что говорит об их малой концентрации в растворимой фракции и, следовательно, о том, что фрагменты с n = 0, 1, 2, 3 обязаны своим происхождением полипептидам с n > 4.

Таким образом, показано, что при воздействии у.в. на гетерогенные смеси аланина с силикагелем происходит поликонденсация аланина с об-

разованием циклических и линейных полипентидов. Линейные полимеры

содержат больше 4 аминокислотных остатков.

Авторы выражают благодарность акад. Ю. А. Овчинникову за интерес к работе, В. М. Липкину, Н. Н. Модянову, Н. Г. Абдуллаеву, а также В. С. Жученко и Н. М. Стырикович за помощь в постановке опыта и анализе образцов.

Институт химической физики Академии наук СССР Москва Поступило 12 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Джоп Бернал, Возникновение жизни, М., 1969. ² І. І. Gilvarry, А. R. Hochstim, Nature, 197, 624 (1963). ³ S. W. Fox, K. Harada, J. Am. Chem. Soc., 82, 3745 (1960). ⁴ М. Кальвин, Химическая эволюция, М., 1971. ⁵ Л. А. Баратова, В. И. Гольданский и др., Биохимия, 35, 1216 (1970). ⁶ И. Н. Дулин, В. Н. Зубарев и др., ЖФХ, 44, 2904 (1971). ⁷ И. Н. Дулин, Л. В. Альтшулер и др., ФТТ, 11, 1252 (1969). ⁸ А. Беллами, Инфракрасные спектры молекул, ИЛ, 1962. ⁹ И. М. Хайс, К. Мацек, Хроматография на бумаге, ИЛ, 1962. ¹⁰ М. М. Shemyakin, Iu. А. Ovchinnikov, FEBS Letters, 7, 8 (1970).