Доклады Академии наук СССР 1972. Том 207, № 1

УДК 541.49: 541.572 <u>ХИМИЯ</u>

Ж. С. ГАЛУАШВИЛИ, И. П. РОММ, Е. Н. ГУРЬЯНОВА, И. М. ВИКТОРОВА, Н. И. ШЕВЕРДИНА, академик К. А. КОЧЕШКОВ

ЭНЕРГИЯ рл-СОПРЯЖЕНИЯ ТРИФЕНИЛБОРА

В молекуле трифенилбора имеет место взаимодействие π -электронов фенильных колец с вакантной p-орбиталью атома бора. Свидетельством этому может служить полоса поглощения с λ_{\max} 287 м μ ($\lg \epsilon = 4,0$) в у.-ф. спектре трифенилбора, которую относят к внутримолекулярному переносу заряда с ароматического кольца на вакантную орбиталь атома бора (1). Это взаимодействие по аналогии с взаимодействием в ароматических аминах, эфирах, сульфидах и др. можно назвать $p\pi$ -сопряжением.

Полагают, что подобное взаимодействие имеет место во многих соединениях, содержащих атом бора в sp^2 -состоянии и атомы или группы, способные к π -взаимодействию с вакантной орбиталью бора за счет π -системы или неподеленных пар электронов гетероатомов ($CH_2 = CH - F$, CI и др.). Эти соединения пироко используются в качестве комплексообразователей, и вопрос об энергии сопряжения в этих молекулах представляется очень важным. Между тем в литературе нет сведений о какихлибо попытках экспериментально определить величины энергий сопряжения в подобных соединениях. Квантовохимические расчеты приводят к выводу об очень больших величинах энергий π -связывания в соединениях бора: $47.8~(^2)$, 56.7~ ккал/моль $(^3)$ в BF_3 ; $29.8~(^2)$, 54.6~ ккал/моль $(^3)$ в BCl_3 ; $11.8~(^3)$, 15.0~ ккал/моль $(^4)$ в $B(CH=CH_2)_3$. В настоящей работе сделана попытка экспериментально определить энергию $p\pi$ -сопряжения в молекуле трифенилбора методом комплексообразования $(^6)$.

Известно, что при образовании комплексов с n-донорами (аминами, эфирами и др.) молекулы BX_3 претерпевают существенную перестройку — из плоской конфигурации (sp^2) в тетраэдрическую (sp^3) . Вакантная орбиталь атома бора в комплексе участвует в образовании донорно-акцепторной связи. Естественно ожидать, что $p\pi$ -сопряжение в трифенилборе и других соединениях бора будет нарушаться при образовании комплекса. Действительно, полоса внутримолекулярного переноса заряда в спектре трифенилбора исчезает при образовании комплекса $(C_6H_5)_3B$ с аммиаком. У.-ф. спектр комплекса подобен спектру бензола $(^1)$. Если энергия $p\pi$ -сопряжения в молекуле трифенилбора достаточно велика, то мы должны ожидать, что теплоты образовании комплексов $(C_6H_5)_3B$ будут намного меньше, чем соответствующих комплексов Alk_3B , вследствие значительных затрат энергии на разрыв $p\pi$ -сопряжения в трифенилборе при комплексообразовании.

Мы измерили дипольные моменты и тепловые эффекты реакций образования комплексов трифенил- и триэтилбора с пиридином и γ -пиколином (см. табл. 1). Последние были выбраны в качестве доноров, чтобы по возможности уменьшить влияние стерического фактора на физикохимические параметры комплексов. Тепловые эффекты реакций образования комплексов ($-\Delta H_{\rm K}$, ккал/моль)

$$R_3B(pactb.) + Д(pactb.) = Д \cdot R_3B(pactb.)$$

были измерены методом калориметрического титрования (7) в бензоле при 25° С с точностью $\pm 0.3 \div 0.5$ ккал/моль. Динольные моменты выде-

Дипольные моменты и тепловые эффекты реакций образования комплексов Д \cdot BR3 в бензоле при 25°

Комплекс	P_{∞}	R_D	μ _K	$-\Delta H_{ m K}$	$\mu_{ m JA}$	μ _{ДΑ} /er
$C_5H_5N \cdot B (C_6H_5)_3$	815,3	100,4	5,88	17,7	3,4	0,45
$4-CH_3C_5H_4N\cdot B\ (C_6H_5)_8$	819,3 930,0	100,4 105,6	5,89 • 6,31	17,9	3,4	0,45
$C_5H_5N \cdot B (C_2H_5)_3 (CH_3)_3N \cdot B (CH_3)_3$	993,8 585,0	105,6 57,9	6,56 * 5,05 3,92 (11)	18,0 17,6 (12)	$^{2,6}_{2,9}$	0,34 0,38

^{*} Измерено в 1,4-диоксане.

ленных комплексов были измерены в бензоле и 1,4-диоксане при 25°. В табл.1 приведены: молярная поляризация комплекса при бесконечном разбавлении (P_{∞}) , полученная экстраноляцией по Хедестранду; молярная рефракция (R_D) , принятая равной соответствующей сумме молярных рефракций пиридина $(24,2~{\rm cm}^3)$ (8), у-пиколина $(29,4~{\rm cm}^3)$ (8); триэтилбора $(33,7~{\rm cm}^3)$ (9) и трифенилбора $(76.2~{\rm cm}^3)$ (9); дипольный момент комплекса $(\mu_{\rm K},D)$, вычисленный по формуле

 $\mu = 0.221 \overline{P_{\infty} - R_D}.$

При рассмотрении дапных табл. 1 прежде всего обращает на себя внимание тот факт, что теплоты образования комплексов трифенил- и триэтилбора с пиридином совпадают в пределах ошибки опыта. Дипольные моменты этих комплексов также сравнительно близки. Значит, при образовании комплекса трифенилбора с пирилином не происходит существенной затраты энергии на разрыв $p\pi$ -сопряжения в трифенилборе. Поскольку из спектральных данных (1) следует, что $p\pi$ -сопряжение в комплексах трифенилбора полностью парушено, мы можем сделать вывод, что энергия сопряжения невелика. Оценить ее можно, сопоставляя теплоты образования комплексов со степенью переноса заряда от донора к акцентору.

Дипольный момент комплекса (µ_в) можно представить в виде векторной суммы

$$\mu_R = \vec{\mu_A} + \vec{\mu}_{JA} + \vec{\mu}_{J}, \tag{1}$$

где μ_A и μ_A — дипольные моменты донорной и акцепторной частей комплекса, ила — дипольный момент донорно-акцепторной связи. В исследуемых комплексах все три вектора направлены по одной прямой. Дипольный момент донорной части комплекса, как обычно, принимаем равным дипольному моменту донора, т. е. 2,2D в комплексах пиридина и 2,6D в комплексах у-пиколина (8). Дипольные моменты акценторной части исследуемых комплексов равны дипольным моментам групп (С₂Н₅)₃В— и (C₆H₅)₃В—. Дипольные моменты алифатического и соответствующего фенильного производного могут существенно отличаться, если в фенильном производном появляется мезомерный момент (10). Поскольку рл-сопряжение в комплексах Д.В(С6Н5) з нарушено, дипольные моменты групп $(C_6H_5)_3B-$ и Alk $_3B-$ должны быть близки. Бехер (11) оценил дипольный момент тетраэдрической группы (СН_з) зВ в 0,3D, и мы принимаем µ в рассматриваемых комплексах равным 0,3 D. Конечно, углы СВС в комплексах трифенил- и триэтилбора могут из-за стерического фактора несколько превышать 109°, однако величина дипольного момента группы RB слишком мала, чтобы небольшие колебания в величинах углов CBC существенно изменили дипольный момент группы R₃B. Вычисленные по уравнению (1) дипольные моменты донорно-акцепторных связей и стенень переноса заряда $\mu_{\pi A}/er$ приведены в табл. 1 (e — заряд электрона,

r — длина донорно-акцепторной связи, 1,58 Å). Как видно, степень переноса заряда в комплексах азотсодержащих доноров с трифенилбором (0.45) несколько выше, чем в комплексах с триметил- и триэтилбором (в среднем 0.36).

Комплексы Р. В с аминами и пиридином являются комплексами типа пи средней силы, у которых наблюдается линейная зависимость между степенью переноса заряда от донора к акцептору и теплотой образования донорно-акцепторной связи (12). Используя эту зависимость и зная, что степень переноса заряда в комплексах трифенилбора на 0,09 выше, чем в комплексах триалкилбора, мы приходим к выводу, что теплоты образования донорно-акцепторных связей ($-\Delta H_{\rm LA}$) рассматриваемых комплексов трифенилбора приблизительно на 3 ккал/моль выше, чем комплексов триметил- и триэтилбора. Несколько большая акцепторная сила трифенилбора объясняется индуктивным эффектом радикалов. Индукционные константы заместителей σ^* равны $+\hat{0},\hat{6},\ 0$ и -0,1 для C_6H_5 -, CH_3 - и C_2H_5 -групп соответственно (14).

Теплоту образования комплекса ($-\Delta H_{\rm R}$) можно представить в виде суммы

$$\Delta H_{\rm K} = \Delta H_{\rm A} + \Delta H_{\rm DA} + \Delta H_{\rm D},\tag{2}$$

где $\Delta H_{\rm A}$ и $\Delta H_{\rm M}$ — энергии перестройки акцептора и донора при комплексообразовании, $-\Delta H_{\mathrm{JA}}$ — теплота образования донорно-акцепторной связи. Теплоты образования приведенных в табл. 1 комплексов совпадают в пределах ошибки эксперимента. Энергии перестройки доноров незначительны, и во всяком случае они одинаковы, когда использовался один и тот же донор (пиридин). Поскольку теплоты образования донорно-акцепторных связей в комплексах трифенцибора на 3 ккал/моль чем в комплексах триметил- и триэтилбора, то из уравнения (2) следует, что на перестройку трифенилбора при комплексообразовании расходуется на 3 ккал/моль больше, чем на перестройку триалкилбора. Разница в перестройке этих акцепторов заключается в нарушении рл-сопряжения в молекуле трифенилбора при комплексообразовании. Таким образом, энергия рл-сопряжения трифенилбора равна 3 ккал/моль $(\pm 2$ ккал/моль).

Энергия ря-сопряжения трифенилбора очень невелика и на порядок ниже тех величин энергий п-связывания, которые для соединений такого типа дают квантовохимические расчеты. Поэтому к величинам энергий перестройки акценторов, полученным с помощью этих расчетов, следует относиться с осторожностью.

Физико-химический институт им. Л. Я. Карпова Москва

Поступило 9 VI 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

1 B. G. Ramsey, J. E. Leffler, J. Phys. Chem., 67, 2242 (1963). B. G. Ramsey, J. Phys. Chem., 70, 611 (1966). ² F. A. Cotton, J. R. Leto, J. Chem. Phys., 30, 993 (1959). ³ D. R. Armstrong, P. G. Perkins, J. Chem. Soc. A, 1967, 1218. ⁴ H. Kato, K. Yamaguchi et al., Bull. Chem. Soc., Japan. 38, 2144 (1965). ⁵ C. D. Good, D. M. Ritter, J. Am. Chem. Soc., 84, 1162 (1962). ⁶ I. P. Romm, E. N. Guryanova, K. A. Kocheshkov, Tetrahedron, 25, 2455 (1969). ⁷ И. П. Гольдтейн, Е. Н. Гурьянова, И. Р. Карнович, ЖФХ, 39, 932 (1965). ⁸ C. W. N. Cumper, A. I. Vogel, S. Walker, J. Chem. Soc., 1956, 3621. ⁹ W. Strohmeier, K. H. Hümpfner, Zs. Elektrochem., 61, 1010 (1957). ¹⁰ B. И. Минкин, О. А. Осипов, Ю. А. Жданов, Дипольные моменты в органической химии, 1968, стр. 175. ¹¹ Н. J. Весher, Zs. anorg. u. allgem. Chem., 270, 273 (1952). ¹² H. C. Brown, H. Bartholomay, M. D. Taylor, J. Am. Chem. Soc., 66, 435 (1944). ¹³ И. П. Гольдштейн, Е. Н. Харламова, Е. Н. Гурьянова, ЖОХ, 38, 1984 (1968). ¹⁴ Ю. А. Жданов, В. И. Минкин, Корреляционный анализ в органической химии, Ростов-на-Дону, 1966, стр. 312.