ЧУВСТВИТЕЛЬНОСТЬ МЕЖДУНАРОДНОГО ЛИНЕЙНОГО КОЛЛАЙДЕРА К МАССЕ Z' – БОЗОНА В РАСШИРЕНИЯХ СТАНДАРТНОЙ МОДЕЛИ С $U(1)_x$ СИММЕТРИЕЙ

Д. В. Синегрибов^{1, 2}

 $^1\Gamma$ омельский государственный университет имени Франциска Скорины, г. Гомель, Республика Беларусь, $^2\Gamma$ омельский государственный технический университет имени П. О. Сухого, г. Гомель, Республика Беларусь

В работе на основе модельно-зависимого анализа получены нижние границы на массу Z' – бозона для планируемого эксперимента на Международном линейном коллайдере. Ограничения получены в результате традиционного критерия χ^2 для процесса электрон-позитронной аннигиляции в пару мюонов.

Наиболее простые теории, описывающие физику за пределами Стандартной Модели (СМ), основываются на добавлении дополнительной U(1) калибровочной симметрии. Обусловленные U(1), дополнительные нейтральные Z'– бозоны [1] предсказываются многими теориями (теории великого объединения, суперсимметричные и суперструнные теории, сценарии калибровочно-хиггсовского объединения). В данной работе исследуется модель на основе калибровочной группы $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X$. Структурой $U(1)_X$ (параметрами X_H и X_Φ) определяются особенности взаимодействия между Z'– бозонами и фермионами СМ [2]. Важно отметить, что задача установления ограничений на характеристики Z'– бозона содержится в программе исследований Международного линейного коллайдера (ILC) [3].

Ключевая роль отводится представлению дифференциального сечения рассеяния в приближении Борна для процесса $e^+e^- \to \gamma, Z, Z' \to \mu^+\mu^-$, которое приведено и детально рассмотрено в работе [4]. Очевидно, что достижение порога рождения новой частицы ограничено максимальной энергией коллайдера. Значительно более широкие масштабы можно исследовать на основе косвенного анализа. В работе рассматривается сценарий, когда предполагаемая масса Z' – бозона значительно больше энергии коллайдера. При построении критерия χ^2 , СМ рассматривается в качестве фона. Выдвигается гипотеза, согласно которой все экспериментальные данные согласуются СМ в пределе одного стандартного отклонения. В качестве наблюдаемой характеристики процесса используется число событий, которое записывается стандартно.

Полученные нижние границы на массу Z' – бозона для вариаций расширений $U(1)_x$ (таблица 1) представлены в таблице 2.

Таблица 1 — Влияние параметра $x_{\!\scriptscriptstyle H}\,$ на взаимодействия Z '— бозона при значении $x_{\!\scriptscriptstyle \Phi}=1$

X_H	Особенность взаимодействия	
-2	Отсутствие связи между Z'-бозонами и левыми фермионами	
-1	Отсутствие связи между Z' – бозонами и правыми электронами	
1	Отсутствие связи между Z' - бозонами и правыми d кварками	
2	Наличие связи между Z '– бозонами и всеми фермионами	

Таблица 2 — Рассчитанные нижние границы на массу Z '— бозона для расширений $U(1)_X$ на уровне 1 σ при отсутствии поляризации на ILC

X_H	Значения M_{Z^+} для стадии	Значения M_{Z^+} для стадии
	ILC с энергией 500 ГэВ	ILC с энергией 1000 ГэВ
-2	7720	14866
-1	3104	5993
1	6244	12002
2	10879	20913

Таким образом, получены нижние границы на массу дополнительного Z '— бозона для неполяризованного эксперимента на ILC на основе расширений $U(1)_X$, которые представлены в Таблице 2. Как видно из Таблицы 2, сечения становятся более чувствительными при росте энергии столкновений. Полученная информация является ключевой для проверки и построения теорий на основе рассматриваемой калибровочной группы.

Литература

- 1. Review of particle physics [Particle Data Group Collaboration] / S. Navas [et al.] // Phys. Rev. D. Vol. 110, N 3. 2024. P. 030001.
- 2. Das, A. Probing the minimal $U(1)_X$ model at future electron-positron colliders via fermion pair-production channels / A. Das, P. S. Bhupal Dev, Y. Hosotani, S. Mandal // Phys. Rev. D. Vol. 105, –11. –2022. P. 115030.
- 3. The International Linear Collider: Report to Snowmass 2021 / A. Aryshev [et al.] // FERMILAB-FN-1171-PPD-QIS-SCD-TD. 2021. 356 p.
- 4. Sinegribov, D. V. Model-Independent Analysis of the Indirect Effects of Additional an Z'-boson at CLIC / D. V. Sinegribov, V. V. Andreev, I. A. Serenkova // Nonlinear Phenomena in Complex Systems. Vol. 28, № 1. 2025. P. 68–78.

УДК 544.032.65

ВОЗДЕЙСТВИЕ ИЗЛУЧЕНИЯ ВОЛОКОННОГО ЛАЗЕРА ИК-ДИАПАЗОНА НА МОНОКРИСТАЛЛИЧЕСКИЙ КРЕМНИЙ

И. Ю. Славинский, В. Э. Анискевич

Институт физики НАН Беларуси, г. Минск, Республика Беларусь

Исследовано воздействие излучения импульсного волоконного лазера ИК-диапазона при различных параметрах на монокристаллический кремний. Выявлены режимы образования структурных дефектов, а также оксидов кремния на поверхности образца. Результаты важны для оптимизации параметров лазерной обработки кремния.

Возможности использования лазерного излучения для обработки кремния широко исследуются [1-3]. Коэффициент поглощения кремния для лазерного излучения ультрафиолетового (УФ) диапазона в несколько раз выше, чем для инфракрасного (ИК), поэтому для обработки кремниевых пластин зачастую применяют лазерные системы с преобразованием частоты излучения во вторую и третью гармоники. Недавние исследования показали, что эффективность процесса можно повысить с помощью бихроматического