УДК 551.543 (261/264): (213) «52-2»

ГЕОФИЗИКА

Р. В. АБРАМОВ

ПОЛУСУТОЧНАЯ ВОЛНА ДАВЛЕНИЯ НАД ТРОПИЧЕСКИМ ОКЕАНОМ

(Представлено академиком Л. М. Бреховских 14 II 1972)

Полусуточная волна давления является наиболее правильным из известных атмосферных колебаний. В соответствии с принятой классификацией (¹) она относится к синоптическому интервалу (3—30 µгц) частот, представляющему практический интерес. В низких широтах полусуточная волпа является характерной и постоянной особенностью барограмм (²). Опубликованные исследования опираются на серии длительных наблюдений, выполненных на суше (в основном на континентах, реже — на островах).

Наблюдения в открытом океане для анализа полусуточной волны давления до сих пор не использовались, по-видимому, из-за отсутствия пригодных для обработки серий.

Таблица 1 Характеристики полусуточной волны давления

	Номер серии			
	1	2	3	
	14 VI—15 VII	28 VII-16 VIII	27 VIII—13 IX	
Средние координаты судна (с. ш.)	$\begin{array}{ c c c c c }\hline 16°31' \pm 2' \\ 33°21' \pm 3' \\\hline \end{array}$	16°37′±3′		
(3. д.)	33°21′±3′ 768	$33^{\circ}21' \pm 6'$ 480	$34^{\circ}28' \pm 3'$ 432	
Количество наблюдений	100	400	454	
Анализ дисперспонный				
$ m Pacces nue$ наблюдений $ m \sigma_0^2$	0,261	0,230	0,120	
Рассеяние суточного хода $\sigma_{ m S}^2$	0,409	0,447	0,498	
σ_S^2/σ_0^2	1,57	1,86	4,15	
	į		1 .	
Анализ гармонический				
Амплитуда полусуточной волны $A_{ m S}$, мбар	0,88	0,92	0,94	
Фаза φ_S^0 , град.	137	138	147	
$A_{ m S}/A_{ m max}$	0,45	0,48	0,59	
$A_{f S}/\overline{A}$	0,80	0,69	0,71	
Анализ спек	тральный	t		
Частота «пика» полусуточной волны f_S , μ гц	23,9	23,9	25,0	
Нормированная спектральная илотность $S\left(p\right)_{S}/\mathfrak{z}_{p}^{2}$	0,70	0,72	0,88	
Доля вклада в полный спектр				
$S(p)_{\mathbf{S}} \Delta f_{\mathbf{S}} \int \sum_{i}^{n} S(p)_{i} \Delta f_{i}$	0,13	0,22	0,21	
$S(p)_{\mathbf{S}}\Delta f_{\mathbf{S}} / \sum_{\mathbf{i}} S(p)_{\mathbf{i}}\Delta f_{\mathbf{i}}$	0,13	0,22	0,21	

На исследовательском судне АН СССР «Академик Курчатов» (полигонный гидрофизический эксперимент в тропической зоне Атлантического океана под руководством академика Л. М. Бреховских (4)) в июне — сентябре 1970 г. было выполнено три серин ежечасных отсчетов барометра. Неизбежные перемещения судна (табл. 1) оказались сравнительно невелики, и дисперсионное отношение для полусуточной волны удовлетворяет F-критерию при уровне значимости 0,05. Результаты гармонического ана-

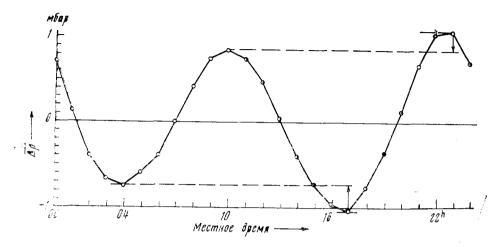


Рис. 1. Средний суточный ход атмосферного давления на гидрофизическом нолигоне (16°30′ с.ш., 33°30′ з.д., июнь — сентябрь)

лиза хорошо согласуются с географическим распределением амплитуд и фаз S_2 , которое получил Хаурвиц (5), использовав данные 216 станций.

Во время выполнения серий над полигоном прошло несколько возмущений, но тем не менее вклад полусуточной волны давления в общее изменение давления вполне ощутим. Функция спектральной плотности, рассчитанная на ЭВМ методом БПФ, имеет в интервале частот 3-120 иги основной максимум на частоте 23,9 иги, соответствующий периоду 11 час. 38 мин., однако следует иметь в виду, что реальный суточный ход давления характеризуется рядом неравенств. Утренняя (00-12) и вечерняя (12-24) волны несимметричны (рис. 1), амплитуда вечерней волны больше, чем утренней, также отмечены неравенства времен подъема и спада. частичью компенсированные осреднением. В темное время суток (18—06) скорость изменения давления больше, чем в светлое (06-48) время (0,33 и 0,28 мбар/час соответственно). Верхней кульминации Солнца соответствует более длительный спад и более глубокий минимум. Вечерние экстремумы запаздывают. Указанные неравенства суточного хода отражают особенности географического положения точки наблюдений и сезона (детнее солицестояние).

Мнение, что суточный ход давления в тропиках подвержен влиянию местных факторов (облачность и др.) (2), не подтверждается. Скорее, можно говорить о влиянии суточного хода давления на изменения метеорологических элементов в пункте наблюдений. Наблюдения с помощью якорного буя в экваториальной части Атлантического океана позволнии обнаружить 12-часовой период в изменениях скорости встра, который также прослеживался в ходе испарения с поверхности океана и в содержании водяного пара в приводном слое воздуха (6). Коицуми (7) установил, что в суточном ходе температуры воздуха над поверхностью океана имеется максимум около 9 час. местного времени, который он объясняет возможным влиянием колебаний атмосферного давления: если последние проис-

ходят при адиабатических условиях, температура воздуха должна повышаться при увеличении давления.

Предварительные результаты спектрального анализа ежечасных наблюдений над количеством облаков, а также записей температуры и относительной влажности воздуха (табл. 2) на гидрофизическом полигоне свидетельствуют в пользу существования в изменениях этих метеорологических элементов полусуточной составляющей.

Таблица 2 Доля вклада в полный спектр полусуточной составляющей

Элемент	Номер серии		
	1	2	3
Количество облаков Температура воздуха Относительная влажность воз- духа	0,07 0,04 —	0,07 0,06 0,03	$0,06 \\ 0,00 \\ 0,06$

Качественное объяснение полусуточной составляющей в ходе количества облаков, температуры и относительной влажности воздуха достигается с учетом эффекта Коицуми, если в тропическом океане удастся обнаружить понижение температуры воздуха при уменьшении атмосферного давления.

Атлантическое отделение Института океанологии им. П. П. Ширшова Академии наук СССР Калининград

Поступило 8 II 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. С. Монин, Прогноз погоды как задача физики, «Наука», 1969, стр. 11. ² Г. Риль, Тропическая метеорология, ИЛ, 1963, стр. 140. ³ S. Сhартап, R. Lindzen, Atmospheric Tides, Dordrecht, 1970, р. 34, 88. ⁴ Л. М. Бреховских, М. Н. Кошляков и др., ДАН, 198, № 6, 1434 (1971). ⁵ В. Наигwitz, Meteorol. Papers, 2 (5), N. Y., 1956. ⁶ Н. Ноеber, Meteor. Forschungsergebn., В. № 3 (1969). ⁷ М. Коізиті, Papers Meteorol. Geophys., Tokyo, 7, 322 (1956).