УДК 513.735

МАТЕМАТИКА

Э. Р. РОЗЕНДОРН

НЕКОТОРЫЕ ДОСТАТОЧНЫЕ УСЛОВИЯ РЕГУЛЯРНОСТИ ПОВЕРХНОСТИ С ПОСТОЯННОЙ ОТРИЦАТЕЛЬНОЙ ВНУТРЕННЕЙ КРИВИЗНОЙ

(Представлено академиком П. С. Александровым 30 III 1972)

 1° . В трехмерном эвклидовом пространстве E_3 рассмотрим гладкую седловую поверхность S, у которой гауссово сферическое отображение локально гомеоморфно. Пусть на S имеется замкнутое множество \mathfrak{M} линейной меры нуль, вне которого поверхность регулярна. Мы выведем регулярность всей поверхности S из предположения, что ее внутренняя метрика ds^2 регулярна повсеместно. Однако при этом в связи со сложностью техники вспомогательных конструкций, приходится наложить ряд добавочных условий. Из них мы отметим здесь постоянство гауссовой кривизны K метрики ds^2 . Точную формулировку результатов см. ниже, пункты 5° , 6° .

Метод доказательства основан на аппроксимации нормального (или сферического) отображения поверхности регулярными отображениями

специального вида.

- 2° . Пусть G ограниченная односвязная область на S, и пусть $\mathfrak{M} \subseteq G$. Предположим, что на множестве $G \setminus \mathfrak{M}$ поверхность регулярна настолько, что определены ее асимптотические линии и что в $G \setminus \mathfrak{M}$ существуют дуги $l_1,\ l_2,\ l_3,\ l_4$ асимптотических линий, удовлетворяющие следующим условиям:
- 1) дуги l_j , $j=1,\ldots,4$, вместе с пх концевыми точками образуют кривую Γ , гомеоморфную окружности, и занумерованы в порядке обхода линии Γ ;
- 2) l_1 и l_3 имеют геодезическое кручение одного знака, l_2 и l_4 геодезическое кручение противоположного знака;

 β) линия Γ ограничивает некоторую область D («асимптотический че-

тырехугольник»), причем $\mathfrak{M} \subseteq D, D \cup \Gamma \subseteq G, \Gamma \cap \mathfrak{M} = \emptyset$.

 3° . Пусть U_{1},\ldots,U_{m} — какое-нибудь конечное покрытие множества \mathfrak{M} открытыми геодезическими кругами U_{i} . Обозначим через O_{i} центр круга U_{i} , через ρ_{i} — его геодезический радиус, через ρ_{ij} — расстояние на S между O_{i} и O_{j} .

Предположим, что для любого $\varepsilon > 0$ покрытие $U_1, \ldots, U_m, m = m(\varepsilon)$,

множества М можно выбрать так, что

1)
$$\sum_{i=1}^{m} \rho_{i} < \varepsilon;$$

2) $\rho_{ij} > (1+c) (\rho_i + \rho_j)$, где c > 0 — некоторое число, не зависящее от ϵ . (Здесь $i=1,\ldots,m; \ j=1,\ldots,m; \ i\neq j$.)

Первое из этих условий означает, что $\mathfrak M$ имеет линейную меру Хаусдорфа, равную нулю. Второе означает, что покрытия, у которых $\sum \rho_i < \varepsilon$, можно строить из попарно неналегающих кругов U_i , которые остаются попарно неналегающими после увеличения их радиусов в (1+c) раз. Нетрудно указать примеры несчетных множеств, удовлетворяющих обоим этим требованиям.

 4° . Гладкую поверхность S (класса C°) будем называть локально гиперболической, если каждая ее точка имеет окрестность, в которой гаус-

сово сферическое отображение гомеоморфно и меняет ориентацию. (По поводу такой терминологии и свойств таких поверхностей см. $\binom{1}{4}$.)

 5° . Будем считать, что S — гладкая локально гиперболическая поверхность и что множества $G,\,D$ и $\mathfrak M$ на ней удовлетворяют условиям пунктов

2°, 3°. Тогда имеют место формулируемые ниже теоремы.

Теорема 1. Пусть внутренняя метрика поверхности S имеет гауссову кривизну K=-1. Пусть, кроме того, в области $S \backslash \mathfrak{M}$ поверхность S имеет регулярность C^3 и ограниченную среднюю кривизну H ($|H| \leq M_0 = \mathrm{const}$), а градиент средней кривизны допускает оценку вида $|\mathrm{grad}\ H| \leq M_0^{-1}$, где ρ — расстояние до множества \mathfrak{M} . Существует $M_0 = M_0(c, H_0) > 0$ такое, ито $S \in C^3$ всюду в D, если $M \leq M_0$. Теорема 2. Если в условиях теоремы 1 дополнительно потребовать,

Teopema~2. Если в условиях теоремы 1 дополнительно потребовать, чтобы на двух соседних сторонах l_i асимптотического четырехугольника D геодезическая кривизна как функция длины дуги имела регулярность C^n ,

 $n\geqslant 1$, то $S\in C^{n+3}$ всюду внутри D.

Доказательство теоремы 1 опирается на две леммы, сформупированные ниже. Теорема 2 следует из теоремы 1 и результатов работы (5).

Замечание. Если на среднюю кривизну H в области $G \setminus \mathfrak{M}$ никаких условий не накладывать, то нельзя гарантировать регулярность поверхности S на множестве \mathfrak{M} , даже если оно состоит из единственной точки (см. (3), стр. 169-170).

6°. Введем вспомогательные обозначения. Пусть дано отображение

$$p = p(x, y), \quad q = q(x, y) \tag{1}$$

какой-либо области X на плоскости ху в плоскость ра. Положим

$$J = q_x - p_y, \quad \Delta = \frac{\partial (p, q)}{\partial (x, y)}, \quad \mu = (1/4J^2 - \Delta)^{-1/2}, \quad \nu = 1/2J\mu.$$
 (2)

Здесь и ниже производные (по соответствующим переменным) обозначены буквенными индексами снизу.

Пусть S— гладкая локально гиперболическая поверхность вида z=f(x,y), внутренняя метрика которой имеет постоянную гауссову кривизну K=-1. Будем предполагать для упрощения формулировок, что функция f(x,y), заданная в некоторой области X плоскости xy, удовлетворяет неравенству $|\gcd f| < 1$. Обозначим через F нормальное отображение поверхности S, т. е. отображение $p=-f_x$, $q=-f_y$ области X в плоскость pq.

Условимся, обозначая буквой какую-нибудь фигуру на S, той же буквой со штрихом обозначать проекцию этой фигуры на плоскость xy. Пусть на S даны: точка O, геодезический круг V с центром O и радиусом ρ , а также гладкие дуги L_1 и L_2 длины l, $0 < l < \rho$, серединой которых служит точка O, образующие в точке O угол ω , $\sin \omega > 0$. Имеет место

Лемма 1. Пусть существуют окрестности V_1 и V_2 дуг L_1 и L_2 , в которых $S \in C^3$, причем сами линии L_1 и L_2 являются асимптотическими линиями поверхности S. Пусть, кроме того, нормальное отображение F поверхности S допускает в области V' сколь угодно точную равномерную аппроксимацию гомеоморфным отображением вида (1) класса C^2 , которое

а) имеет отрицательный якобиан $\Delta < 0$;

б) совпадает с F на $V_1' \cup V_2'$;

$$\mathbf{B}$$
) удовлетворяет условию * (3)

$$\iint\limits_{\mathbb{R}^{2}} (|1+p^{2}+q^{2}-\mu^{-1}|+|\mu_{p}\Delta-2p|+|\mu_{q}\Delta-2q|+|\nu_{x}|+|\nu_{y}|)\,dx\,dy < \varepsilon.$$

 $\epsilon\partial e$ ϵ — cколь угодно малое наперед заданное положительное число.

^{*} Для нормального отображения имеем $J=\mu=0$; если же S регулярна и K=-1, то $\mu^{-1}=(|\Delta|)^{\frac{1}{2}}=1+p^2+q^2$, так что $\mu_p\Delta=2p$, $\mu_q\Delta=2q$.

⁴ Доклады АН т. 207, № 2

Тогда существует окрестность U точки O, в которой $S \in C^3$. Кроме того, существует число $l_0 > 0$, зависящее от $\sin \omega$ и от геодезической кривизны линий L_1 и L_2 , такое, что внутри U содержится замкнутый асимптотический четырехугольник D со сторонами длины l_0 и центром в точке O, если только $l > l_0$.

7°. Для доказательства леммы 1 последовательно устанавливаются

следующие факты.

А) Пусть дана система уравнений вида

$$x_{uv} = A(x, y) \frac{\partial(x, y)}{\partial(u, v)}, \quad y_{uv} = B(x, y) \frac{\partial(x, y)}{\partial(u, v)}, \quad (4)$$

где A, B пепрерывны в достаточно большом круге R вида $x^2 + y^2 \leqslant r^2$. Тогда задача Дарбу для системы (4) с непрерывными начальными условиями, заданными при u=0 и при v=0, имеет в некотором квадрате Q_a вида |u| < a, |v| < a единственное решение $\{x(u,v), y(u,v)\}$, удовлетворяющее условию $\partial(x,y)/\partial(u,v) > 0$. Число a>0 допускает оценку снизу через максимумы модулей начальных данных задачи и коэффициентов A и B.

В) В некоторой окрестности точки O на S существуют такие криволинейные координаты u, v, в которых декартовы координаты x и y текущей точки поверхности удовлетворяют системе вида (4) ири $A = -f_s$,

 $B = -f_y$, причем u = 0 на L_1 , v = 0 на L_2 .

В) Пусть в области X на плоскости xy задано гомеоморфиюе отображение F вида (1) класса C^2 с отрицательным якобианом $\Delta \leq 0$ и введены такие криволинейные координаты u, v, что u-линии и v-линии являются характеристиками отображения F (определение характеристик отображения см. (2)). Тогда имеют место соотношения $x = \varphi(u, v), y = \psi(u, v)$, где $\{\varphi, \psi\}$ — некоторое решение системы вида (4) с коэффициентами

$$A = -\frac{1}{2}(\mu_{p}\Delta + \nu_{q}), \quad B = -\frac{1}{2}(\mu_{q}\Delta - \nu_{x})$$
 (5)

(и и у определяются формулами (2)).

Г) Пусть $\{x_n(u,v),y_n(u,v)\}$ — решение задачи Дарбу с такими же начальными данными, как в п. А), по для другой системы $x_{vv}==A_n(x,y)\frac{\partial(x,y)}{\partial(u,v)}$, $y_{uv}=B_n(x,y)\frac{\partial(x,y)}{\partial(u,v)}$, коэффициенты которой

 A_n и B_n непрерывны в круге R, и пусть $\frac{\partial (x_n, y_n)}{\partial (u, v)} > 0$, $n = 1, 2, \dots$ Тогда $x_n \to x$, $y_n \to y$ равномерно в некотором квадрате Q_b , 0 < b < a, при $n \to \infty$, если $\lim_{n \to \infty} \iint_R (|A_n - A| + |B_n - B|) dx dy = 0$. Отсюда и из (3)

и (5) следует, что характеристические сети отображений, аппроксимирующих F по условию леммы 1, равномерно сходятся при $\varepsilon \to 0$ к проекции на плоскость xy координатной сети uv, построенной на S согласно п. E).

Д) Апиликата z текущей точки поверхности S имеет в координатах uv (построенных в п. Б)) смешанную производную z_{uv} , причем

$$z_{uv} = \lim_{\varepsilon \to 0} \left(\frac{1}{\mu} + Ap + Bq \right) \frac{\partial (\varphi, \psi)}{\partial (u, v)} = \frac{\partial (x, y)}{\partial (u, v)}. \tag{6}$$

Величины φ , ψ в формуле (6) определяются согласно и. В), коэффициенты A, B даются формулами (5).

E) Радиус-вектор $\mathbf{M} = \{x, y, z\}$ текущей точки на S удовлетворяет уравнению $\mathbf{M}_{uv} = [\mathbf{M}_u \times \mathbf{M}_v]$, для которого решение задачи Дарбу имеет такую же регулярность, как начальные данные этой задачи.

Из п. Е) и условий леммы 1 сразу следует, что $S \in C^2$ в некоторой области Q_α вида $|u| < \alpha$, $|v| < \alpha$. Отсюда и из результатов работы (5) следует, что $S \in C^3$ в некотором асимптотическом четырехугольнике \widetilde{D} ,

 $\mathcal{D} \subset Q_{\alpha}$. Размеры \mathcal{D} оцениваются снизу (с учетом пунктов А) и Г)), чем

и завершается доказательство леммы 1.

 8° . Пусть S— гладкая локально гиперболическая поверхность, заданная уравнением вида z=f(x,y) в единичном круге V_{\circ} $(x^2+y^2<1)$, касающаяся плоскости z=0 в центре этого круга. Пусть \mathfrak{M} — некоторое множество точек поверхности S, удовлетворяющее условиям пункта 3° . Пусть, кроме того, в области V_{\circ} \mathfrak{M}' функция f(x,y) имеет регулярность C^3 и соблюдаются оценки вида $f_{xx}f_{yy}-f_{xy}^{\ 2}\leqslant -m_1;\ |f_{xx}|,\ |f_{xy}|,\ |f_{yy}|\leqslant m_2;\ |f_{xxx}|,\ |f_{xxy}|,\ |f_{xyy}|,\ |f_{yyy}|\leqslant m_3\rho^{-1}$. Здесь $m_1,\ m_2,\ m_3$ — положительные постоянные, ρ — расстояния до множества \mathfrak{M}' . Тогда справедлива

Пемма 2. Существует $m=m(c,m_1,m_2)>0$ такое, что при $m_3 \le m$ найдется круг $V_1 \subset V_0$, в котором нормальное отображение F поверхности S можно сколь угодно точно равномерно аппроксимировать гомеоморфным отображением F вида (1) класса C^2 с отрицательным якобианом и с соблюдением неравенства вида (3). При этом можно обеспечить равенство

F=F вне сколь угодно малой окрестности множества ${\mathfrak M}'.$

Доказательство. Пусть U_i — один из геодезических кругов покрытия множества \mathfrak{M} , описанного в пункте 3° , \overline{U}_i — геодезический круг, получающийся из U_i увеличением радиуса в $(1+\theta c)$ раз, $0<\theta<1$. В области \overline{U}_i' строится вспомогательное отображение F_i класса C^2 , которое затем «склеивается» с отображением F внутри кольцевой области $\overline{U}_i' \setminus \overline{U}_i'$. Такое построение проводится для всех кругов U_i . В результате получается искомое отображение F.

Московский государственный университет им. М. В. Ломоносова Поступило 17 ПЕ 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Л. Вернер, Матем. сборп., 74 (116), № 2 (1967); 75 (117), № 1 (1968). ² Н. В. Ефимов, там же, 64 (106), № 2 (1966). ³ С. Э. Кон-Фоссен, Некоторые вопросы дифференциальной геометрик в целом, М., 1959. ⁴ А. В. Погорелов, Поверхности ограниченной внешней кривизны, Харьков, 1956. ⁵ Э. Р. Розендорн, Матем. сборн., 73 (115), № 2 (1967).