УДК 546.831+547.466+541.486

RHMNX

3. Н. ПРОЗОРОВСКАЯ, С. С. КАЛИНИНА, Л. Н. КОМИССАРОВА, К. И. ПЕТРОВ, академик Викт. И. СПИЦЫН

соединения циркония с глицином и серином

Литературные данные о соединениях циркония с глицином и серином отсутствуют. Между тем исследование свойств и строения подобных соединений представляет несомненный теоретический интерес, так как позволяет определить зависимость способа координации лиганда от характера и взаимного расположения его функциональных групп. Кроме того, не исключена возможность использования этих соединений в аналитической химии пиркония.

Соединения циркония с глицином и серином были получены осаждением ацетоном из водных растворов хлорокиси циркония $(0.5\ M)$ и соответствующих кислот $(1.0\ M)$ при различных молярных соотношениях ком-

понентов (1:1, 1:2, 1:3, 1:4). Синтезированные вещества апализировали на содержание металла — весовым методом в виде ZrO₂, углерода, водорода, азота - методом элементного анализа, хлора — весовым методом в виде серебра, а также по методу Фольгарда. Количество ОН-групп определяли по известной методике (1) путем титрования соединений 0.1 N HCl присутствии КГ. Из полученных данных (табл. 1) следует, что в зависимости от соотношения компонентов в исходном растворе состав синтезированных соединений циркония с глицином и серином изменяется. Он может быть выражен общей формулой Zr₄O(OH)₈Cl₆·nHA · mH_2O , где HA — молекула лиганда, $n=4\div 12$ для HGl, $n=4\div 10$ для HSer. Интересно отметить, что сумма числа молекул НА (п) и Н2О (т) остается постоянной и равной 14.

Большая часть образцов представляла собой плохо закристаллизованные вещества и лишь



Рис. 1. Термогравиграммы соединений цирконыя с глицином: $1 - \mathrm{Zr_4O}\,(\mathrm{OH})_8\mathrm{Cl_6} \cdot 4\mathrm{HGl}\cdot 10\mathrm{H}_2\mathrm{O}, \quad 2 - \mathrm{Zr_4O} \cdot (\mathrm{OH})_8\mathrm{Cl_6}\cdot 7\mathrm{HGl}\cdot 7\mathrm{H}_2\mathrm{O}, \quad 3 - \mathrm{Zr_4O}\,(\mathrm{OH})_8\mathrm{Cl_6}\cdot 10\mathrm{HGl}\cdot 4\mathrm{H}_2\mathrm{O}, \quad 4 - \mathrm{Zr_4O}\,(\mathrm{OH})_8\mathrm{Cl_6}\cdot 12\mathrm{HGl}\cdot 10\mathrm{HG} \cdot 2\mathrm{H}_2\mathrm{O}, \quad 2\mathrm{H}_2\mathrm{O}\,(\mathrm{OH})_8\mathrm{Cl_6}\cdot 12\mathrm{HGl}\cdot 10\mathrm{HG} \cdot 10\mathrm{H}_2\mathrm{O}, \quad 2\mathrm{H}_2\mathrm{O}$

некоторые образцы дали удовлетворительные рентгенограммы. Отсутствие на них линий, соответствующих хлорокиси циркония и свободным кислотам, подтверждает индивидуальность выделенных соединений. Опи термически неустойчивы и начинают разлагаться при ~60—100°. Как следует из данных элементного анализа продуктов, полученных путем выдерживания исходных соединений до постоянной массы при соответствующих температурах, в этом температурном интервале происходит полное обезвоживание соединений (рис. 1, табл. 2).

Кривые дегидратации соединений циркония с серином и глицинатов циркония аналогичны. Удаление молекул воды у соединений циркония с глицином и серином происходит в одну стадию, причем интервал температур, соответствующий удалению воды, смещается от 100—120° (для 10-водных соединений) до 60—70° (для 2—4-водных соединений). По-видимому, это явление связано с наличием в высоководных соединениях

Результаты анализов синтезированных соединений циркония с глицином и серином

Молярн. соотн. компо- иент		Найдено, масс. %					Вычислено, масс. %				6			
	Соединение	Zr	С	Н	N	СI	г-ат Zr	Zr	C	Н	N	Gl		Т. нач. разл.,* °С
1:1 1:2 1:3 1:4 1:1 1:2 1:3	Zr ₄ O(OH) ₈ Cl ₆ ·4HGl·10HO ₂ Zr ₄ O(OH) ₈ Cl ₆ ·7HGl·10H ₂ O Zr ₄ O(OH) ₈ Cl ₆ ·40HGl·4H ₂ O Zr ₄ O(OH) ₈ Cl ₆ ·12HGl·2H ₂ O Zr ₄ O(OH) ₈ Cl ₆ ·4HSer·10H ₂ O Zr ₄ O(OH) ₈ Cl ₆ ·4HSer·8H ₂ O Zr ₄ O(OH) ₈ Cl ₆ ·4HSer·6H ₂ O Zr ₄ O(OH) ₈ Cl ₆ ·4HSer·6H ₂ O	30,2 26,4 23,5 21,9 27,4 24,2 21,7 20,1	7,92 12,2 15,4 17,2 10,8 14,3 17,1 19,1	3,97 4,42 4,25 4,32 4,24 4,39 4,53 4,53	4,62 7,12 9,02 10,1 4,24 5,58 6,67 7,19	17,6 15,4 13,7 12,8 16,0 14,1 12,7 11,8	2,13 2,05 1,98 2,10 2,09 2,13 1,98 2,02	30,0 26,7 23,4 22,4 27,8 24,3 22,0 49,7	8,02 12,5 15,1 17,1 10,8 14,6 17,4 19,4	4,22 4,09 4,32 4,48 4,32 4,53 4,56 4,64	10,4 3,98 5,37	17,3 15,60 13,6 13,1 16,3 14,5 12,6 11,5	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	300 300 300 290 300 280 300 300

^{*} Температура начала разложения органической части молекулы.

Таблица 2 Результаты анализов промежуточных продуктов, полученных при термическом разложении некоторых соединений цирконыя

	T-pa, °C	Найдено, масс. %						Вычислено, * масс. %					
Соединение		Zr	C	H	N	GI	г-экв ОН г-ат Zr	Zr	C	н	N	Gt	г-экв ОН г-ат Zr
Zr ₄ O (OH) ₈ Cl ₆ ·4HGl·10H ₂ O Zr ₄ O (OH) ₈ Cl ₆ ·10HGl·4H ₂ O Zr ₄ O (OH) ₈ Cl ₆ ·4HSer·10H ₂ O Zr ₄ O (OH) ₈ Cl ₆ ·8HSer·6H ₂ O	110 70 100 70	$\begin{array}{c c} 35,9 \\ 24,1 \\ 32,0 \\ 23,5 \end{array}$	8,95 16,5 12,7 17,8	2,98 3,28 3,62 4,25	5,55 9,51 4,78 7,08	$\begin{bmatrix} 20,3 \\ 14,9 \\ 17,9 \\ 14,0 \end{bmatrix}$	1,96 2,68 2,12 1,98	35,5 24,7 31,7 23,3	$\begin{array}{c} 9,32\\ 16,2\\ 12,5\\ 18,3 \end{array}$	2,72 3,92 3,13 4,07	5,43 9,47 4,87 7,15	$\begin{bmatrix} 20,7\\14,4\\18,5\\13,5 \end{bmatrix}$	2,00 2,00 2,00 2,00 2,00

^{*} Вычислено для полностью обезвоженных соединений.

В двовые числа (см⁻¹) максимумов основных полос поглощения HA, NaA, Zr

EGI	NaG1	Zr — HG1 1:2	HSer	NaSer	Zr — HSer i;2	Отнесение частот
507	450	500	435	410	450	
007	520	550	-100	450	470	b(COO), ω(COO',
610	625	590	530	535	505	$\delta_{(COO)}$, $\delta_{$
	690	655			580	ſ
700	700	680	615	625	620	δ _{цикла}
		715			650	,.co
1420	1410	1418	1415	1415		s
1615	1605	1610	1620	1585	1620	$egin{array}{c} \mathbf{v}_{\mathbf{s}}^{\mathrm{CO}} \ \mathbf{v}_{a\mathbf{s}}^{\mathrm{CO}} \end{array}$
	1635	1635 пл.	_	1610 пл.	1630 пл.	$\delta_{ m H_2O}$
	3310	3200—	3200	3300	3200—	$ \mathbf{v}_{\mathrm{OH}}^{\mathrm{H}_{2}\mathrm{O}} $
	3350	3400	3450	3350	3350	011

большего числа межмолекулярных и внутримолекулярных водородных связей. Повышение температуры до $280-320^{\circ}$ (табл. 1) приводит к разложению соединений, которое сопровождается удалением органической части молекулы и образованием при температуре выше 800° моноклинной двуокиси циркония.

Для выяснения характера координации органических лигандов и возможности существования в структуре соединений цирконильной группировки были изучены и.-к. спектры полученных соединений. Отнесение наблюдаемых частот полос поглощения в и.-к. спектрах глицинатов циркония и обсуждение результатов проводилось согласно работам (2-5), в которых изучались и.-к. спектры глицинатов переходных металлов и кислых триглицинатов р.з.э. Отнесение некоторых характеристических частот в и.-к. спектрах соединений циркония с серином проводилось путем их сравнения со спектром соответствующей кислоты, описанным в литературе (8).

Частоты основных обсуждаемых полос поглощения п.-к. спектров синтезированных соединений, а также соответствующих кислот и их натриевых солей, представлены в табл. 3.

Сравнение и.-к. спектров поглощения глицина и глицинатов циркония в области валентных симметричных и асимметричных колебаний карбоксилатной группы показало, что общий характер спектров сохраняется при переходе глицина к комплексам циркония. Поэтому можно предположить, что в соединениях циркония молекулы глицина также имеют бетаиновое строение. Поскольку в таком случае координация через атом азота исключается, то можно полагать, что молекулы глицина связаны с цирконием через атомы кислорода.

Сравнение и.-к. спектров полученных нами глицинатов циркония со спектром описанного в литературе кислого триглицината неодима NdCl₃· (HGl)₃· 3H₂O (⁵), для которого доказана на основе рентгеноструктурных исследований координация глицина через атомы кислорода (⁷), свидетельствовало об аналогии спектров в области 1700—800 см⁻¹. Это находится в полном соответствии с высказанной гипотезой о способе координации глицина через атомы кислорода в полученных нами соединениях:

Характер и.-к. спектра серина позволяет отметить, что в его молекуле, по-видимому, частично нарушена бетаиновая структура, так как полоса

валентного симметричного колебания карбоксилатной группы — слабая, узкая, по сравнению с сильной полосой в его натриевой соли; в то же время, полоса асимметричного валентного колебания смещена в более высокочастотную область. Такое нарушение равноценности связи СО в карбоксилатной группе кислоты может быть объяснено, вероятно, делокализацией протона NH_3 -группы за счет индукционного эффекта, обусловленного нали-

чием ОН-группы в молекуле серина. В п.-к. спектрах соединений циркония с серином общий характер полос поглощения в области $\sim 1700-1400~{\rm cm^{-1}}$ такой же, как в спектре серина; наблюдается резкое уменьшение по сравнению со спектром натриевой соли интенсивности полосы валентного симметричного колебания карбоксилатной группы, вплоть до ее исчезновения, и в то же время сохраняется интенсивная сложная полоса в области $1620~{\rm cm^{-1}}$. Достаточно низкое положение этой полосы $v_{as}^{\rm CO}$ не дает, однако, возможности отнести ее к колебанию чистой двойной связи C=0 и указывает на взаимодействие группы C=0 с металлом. Все это свидетельствует, по-видимому, о принципиально ином характере координации серина по сравнению с глипином:

В и.-к. спектрах всех синтезированных соединений не наблюдается появление каких-либо новых (по сравнению со спектрами кислот и их натриевых солей) узких, интенсивных полос поглощения в области 1000— 800 см⁻¹. Это позволяет сделать вывод об отсутствии цирконильных группировок Zr=O в полученных соединениях.

Характер полос поглощения валентных колебаний ОН-связей (3400—3200 см⁻¹) указывает на наличие в структурах изучаемых соединений спльных водородных связей межмолекулярного характера. Полосы поглощения, соответствующие деформационным колебаниям Н—О—Н, маскируются в спектрах, по-видимому, сложной полосой валентного асимметричного колебания карбоксилатной группы.

В п.-к. спектрах соединений пиркония с глипином и серином не обнаружено полос поглощения в области 328—290 см⁻¹, которые можно было бы отнести к валентным колебаниям связи Zr—Cl (⁵), т. е. в рассматриваемых соединениях хлор не связан непосредственно с атомом циркония.

Таким образом, проведенное исследование показывает, что наличие ОНгруппы в молекуле серина в β-положении к карбоксильной группе приводит к парушению его бетаиновой структуры. что вызывает существенное изменение характера координации серина цирконием по сравнению с глицином. Координация последнего в полученных соединениях осуществляется через ионизированную карбоксильную группу.

Московский государственный университет им. М. В. Ломоносова Поступило 6 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 Л. М. Зайцев, Г. С. Бочкарев, ЖНХ, 7, 795 (1962). 2 Ю. С. Варшавский, Е. Н. Инькова, А. А. Гринберг, ЖНХ, 8, 2659 (1963). 3 А. В. Аблов, Д. Ф. Чапурина, И. Н. Проскина, ЖНХ, 12, 499 (1967). 4 R. Condrate, К. Nакашоto, J. Chem. Phys., 42, 2590 (1965). 5 Л. С. Суханова, Л. И. Мартыненко, В. И. Спицын, ЖНХ, 15, 1494 (1970). 6 М. А. Салимов, В. А. Пчелин, А. В. Керимбеков, ЖФХ, 37, 2285 (1963). 7 К. Ф. Беляева, М. А. Порай-Кошиц и др., ЖСХ, 10, 557 (1969). 8 І. В. Веаttie, М. Webster, J. Chem. Soc., 1964, 3507.