УДК 513.88:513.83

MATEMATHKA

Е. В. ОШМАН

ХАРАКТЕРИСТИКА ПОДПРОСТРАНСТВ С НЕПРЕРЫВНОЙ МЕТРИЧЕСКОЙ ПРОЕКЦИЕЙ В ЛИНЕЙНОМ НОРМИРОВАННОМ ПРОСТРАНСТВЕ

(Представлено академиком А. Н. Тихоновым 27 III 1972)

Пусть E и F — метрические пространства, K(F) — множество всех замкнутых подмножеств пространства F. Отображение $\varphi \colon E \to K(F)$ называется многозначным отображением E в F; φ называется полунепрерывным сверху (5), если множество $\{x \in E \colon \varphi(x) \subset G\}$ открыто в E для каждого открытого множества $G \subset F$. Это определение совпадает с обычным определением непрерывности, если φ однозначно. Нетрудно также показать, что если $\varphi(x) \neq \varphi$ и компактно для любого $x \in E$, то φ полунепрерывно сверху тогда и только тогда, когда из условия $\{x_n\} \subset E$, $x \in E$, $x_n \to x$, $y_n \in \varphi(x_n)$ всегда следует, что последовательность $\{y_n\}$ имеет предельную точку $y \in \varphi(x)$.

Пусть M — множество в E. Многозначное отображение T_M , которое каждой точке $x \in E$ ставит в соответствие множество $T_M(x) = \{y \in M: \rho(x,y) = \rho(x,M)\}$, называется метрической проекцией E на M (4). M называется множеством существования (4), или проксиминальным множеством (proximinal) (2), если $T_M(x) \neq \phi$ для любого $x \in E$, и чебышевским (4), если $T_M(x)$ одноточечно для любого $x \in E$.

Пусть X — линейное нормированное пространство (л.н.п.), X^* — его сопряженное и L — замкнутое подпространство в X. Фактор-пространство X/L в этом случае также л.н.п. с нормой $\|x\| = \inf \{\|x+y\|: y \in L\}$, $\hat{x} = x + L \in X/L$. Рассмотрим на X следующую преднорму, ассоциированную с подпространством L:

$$||x||_{L^{\perp}} = \sup \{|f(x)|: ||f|| \le 1, f \in L^{\perp}\}.$$

где $L^{\perp} = \{ f \in X^* : f(y) = 0 \quad \forall y \in L \}$. С помощью теоремы Хана — Банаха нетрудно показать, что для любого $x \in X$

$$||x||_{L^{\perp}} = \max \{ |f(x)| : ||f|| = 1, f \in L^{\perp} \} = \rho(x, L) = ||\hat{x}||,$$
The $\hat{x} = x + L \in X/L$, (1)

Теорема 1. Пусть X- л.н.п. и L- замкнутое подпространство в X. Тогда для того чтобы метрическая проекция $T_{\scriptscriptstyle L}$ была полунепрерывна сверху, необходимо, чтобы множество $T_{\scriptscriptstyle L}(x)$ было либо пусто, либо компактно для любого $x \in X$. В частности, если L проксиминально, то $T_{\scriptscriptstyle L}(x)$ должно быть компактным для любого $x \in X$.

Доказательство. Пусть $x_0 \in X$, $T_L(x_0) \neq \phi$ и некомпактно. Тогда $T_L(x_0)$ является ограниченным замкнутым выпуклым множеством в л.н.п. L и, как нетрудно видеть, каждая точка $y \in T_L(x_0)$ содержится в некотором интервале с концами, принадлежащими границе множества $T_L(x_0)$ в L. Из этого замечания легко вытекает, что граница множества $T_L(x_0)$ в L также некомпактна и, значит, содержит последовательность $\{y_n\}$, из которой нельзя выделить сходящуюся подпоследовательность. Так как $\{y_n\}$ принадлежит границе множества $T_L(x_0)$ в L, то найдется последовательность $\{z_n\} \subset L$ с $\|y_n - z_n\| \to 0$, $z_n \notin T_L(x_0)$, $n = 1, 2, \ldots$, которая, также как $\{y_n\}$, не имеет предельной точки. Пользуясь замкнутостью мно-

жеств $\{z_n\}$, $T_L(x_0)$ в L и нормальностью л.н.и. L, найдем такое открытое в L множество G, что $T_L(x_0) \subset G$ и $z_n \notin G$, $n=1,2,\ldots$ Предположим теперь, что отображение T_L полунепрерывно сверху. Тогда множество $\{x: T_L(x) \subset G\}$ открыто, содержит x_0 и $x_n = x_0 + z_n - y_n \to x_0$. Поэтому $z_n \in T_L(x_n) \subset G$ при n > N, что невозможно. Теорема доказана.

Заметим, что проксиминальность подпространства L не является необходимой для полунепрерывности сверху метрической проекции T_L . Так, например, в любом нерефлексивном банаховом пространстве существует пепроксиминальное замкнутое гиперподпространство, на которое, очевидно, метрическая проекция полунепрерывна сверху.

T е o p е m а $\ 2$. $Hycrb\ X$ — л.н.n., L — его проксиминальное по ∂ простран-

 $creo u L^{\circ} = \{x \in X : 0 \in T_{L}(x)\}.$

Тогда, для того чтобы метрическая проекция T_L была полунепрерывна сверху, необходимо и достаточно, чтобы выполнялось следующее условие: $V\{x_n\}, Vx \quad (\{x_n\} \subset L^0, x \in L^0, \|x_n - x\|_{L^{\perp}} \to 0) \Rightarrow \{x_n\}$ имеет предельную точку.

Для доказательства теоремы 2 нам понадобится один результат И. Зин-

гера (⁶), теорема (В).

T е о р е м a. Hycrь <math>X-л.н.n., L- его $no\partial n$ ространство u $x \in X$.

Тогда для любого числа $\varepsilon > 0$ существует $y_{\varepsilon} \in X$ такой, что $f(y_{\varepsilon}) = f(x)$ для всех $f \in L^{\perp}$ и $||y_{\varepsilon}|| \leq ||x||_{L^{\perp}} + \varepsilon$.

Приступим к доказательству теоремы 2.

Необходимость. Пусть $\{x_n\} \subset L^0$, $x_0 \in L^0$ и $\|x_n - x_0\|_{L^{\perp}} \to 0$. Тогда, в силу теоремы И. Зингера, существует последовательность $\{y_n\} \subset X$ такая, что

$$f(y_n) = f(x_n - x_0), \quad ||y_n|| \le ||x_n - x_0||_{L^{\perp}} + 1/n$$
 (2)

для всех $f \in L^{\perp}$ и n = 1, 2, ... Из (2) следует, что

$$y_n - x_n + x_0 \in T_L(x_0 + y_n), \quad y_n \to 0, \quad x_0 + y_n \to x_0.$$
 (3)

По предположению, отображение T_L полунепрерывно сверху, поэтому, в силу теоремы 1, $T_L(x)$ компактно для любого $x \in X$. В этом случае из (3) и полунепрерывности сверху T_L вытекает, что последовательность $\{y_n-x_n+x_0\}$, а значит, и $\{x_n\}$ имеет предельную точку.

Д о с т а т о ч н о с т ь. Пусть выполнено условие, фигурирующее в теореме 2, $\{x_n\} \subset X$, $x \in X$, $y_n \in T_L(x_n)$, $n=1,2,\ldots$, и $x_n \to x$. Не нарушая общности, можно считать, что $x \in L^0$. Тогда, очевидно, $z_n = x_n - y_n \in L^0$, $x \in L^0$ и, так как $\{y_n\} \in L$, имеем $\|z_n - x\|_{L^{\perp}} = \|x_n - x\|_{L^{\perp}} \leqslant \|x_n - x\| \to 0$. Следовательно, последовательность $\{z_n\}$, а значит, и $\{y_n\}$ имеет предельную точку. Нетрудно убедиться, что все предельные точки последовательности $\{y_n\}$ принадлежат множеству $T_L(x)$.

Таким образом, мы доказали утверждение: $V\{x_n\}$, Vx, $V\{y_n\}$ ($\{x_n\} \subset X$, $x \in X$, $x_n \to x$, $y_n \in T_L(x_n)$) $\Rightarrow \{y_n\}$ имеет предельную точку $y \in T_L(x)$; это утверждение, очевидно, влечет полунепрерывность сверху

отображения $T_{\scriptscriptstyle L}$. Теорема 2 доказана.

Замечание 1. В силу равенства (1) имеем

$$\begin{aligned} & (\{x_n\} \subset L^\circ, \ x \in L^\circ) \sim (\|x_n\|_{L^\perp} = \|x_n\|, \ \|x\|_{L^\perp} = \|x\|), \\ & (\|x_n - x\|_{L^\perp} \to 0) \sim (\rho(x_n - x, \ L) \to 0) \sim (\|\hat{x}_n - \hat{x}\| \to 0), \end{aligned}$$

где $\hat{x_n} = x_n + L \in X / L$, $\hat{x} = x + L \in X / L$.

Замечание 2. Условие, фигурирующее в теореме 2, равносильно следующему: $\forall \{x_n\}, \ \forall x \ (\{x_n\} \subset X, \ x \in X, \ \|x_n\|_L \bot = \|x_n\| = \|x\|_L \bot = \|x\| = 1, \ x_n + L \to x + L) \Rightarrow \{x_n\}$ имеет предельную точку.

Из теоремы 2 непосредственно вытекает

Теорема 3. Пусть X — л.н.п. и L — чебышевское подпространство в X.

Тогда следующие утверждения эквивалентны:

а) метрическая проекция T_L непрерывна; б) $\forall \{x_n\}, \forall x \quad (\{x_n\} \subset L^0, x \in L^0, \|x_n - x\|_L \bot \to 0) \Rightarrow x_n \to x;$ в) $\forall \{x_n\}, \forall x \quad (\{x_n\} \subset X, x \in X, \|x_n\|_L \bot = \|x\| = \|x\|_L \bot = \|x\| = 1, x_n + L \to x + L) \Rightarrow x_n \to x;$

 Γ) на множестве L^0 топология, индуцируемая преднормой $\|x\|_{L^{\perp}}$, и топология, индуцируемая нормой л.н.п. Х, совпадают.

Если подпространство L имеет конечную фактор-размерность, то из теорем 2 и 3 легко вытекает более простая

 ${
m Teopema}$ 4. Пусть X- л.н.п. u L- его проксиминальное (соответственно чебышевское) подпространство конечной фактор-размерности.

Tогда, для того чтобы метрическая проекция $T_{\scriptscriptstyle L}$ была полунепрерывна сверху (соответственно непрерывна), необходимо и достаточно, чтобы множество L^{0} было ограниченно компактно *.

Для чебышевского подпространства эта теорема была получена другим методом Чини и Вулбертом (7), предложение 10, а для проксиминального подпространства, в преположении компактности $T_{\scriptscriptstyle L}(\bar{x})$, для любого $x \in X$ — Моррисом (8), теорема 2. Замечание 3. Пусть L — проксиминальное подпространство в л.н.и.

X, у которого множество L° ограниченно компактно. Тогда L имеет конечную фактор-размерность.

Замечание 4. В теоремах 2, 3, 4 мы предполагали подпространство L проксиминальным или чебышевским. Полная характеристика таких подпространств в произвольном л.н.п. дана И. Зингером (6). А. Л. Гаркави (3) получил такую характеристику (в более эффективной форме) для класса фактор-рефлексивных подпространств, который, в частности, содержит все подпространства конечной фактор-размерности.

Замечание 5. Все результаты, опубликованные нами в (9), легко могут быть получены с помощью теорем 1-4 и методов, примененных при их доказательствах.

 Π ример. Рассмотрим в пространстве l_2 вещественных числовых последовательностей $x = \{\xi_i\}$, суммируемых с квадратом, следующую норму, эквивалентную исходной:

$$\|x\|_{S'} = \inf\{|\lambda|: x \in \lambda S'\}, \quad S' = \bigcap_{n=3}^{\infty} W_n] \cap S_0,$$

$$W_n = S_n \cap (-S_n), \quad S_0 = \left\{x = \{\xi_i\} \in l_2: \sum_{i=1}^{\infty} \frac{\xi_i^2}{i^2} \le 1\right\},$$

$$S_n = \{x \in l_2: \|x - y_n\| \le R_n\},$$

$$y_n = \left(\underbrace{[1 - R_n] \sqrt{1 - 1/n^2}, [1 - R_n] \frac{1}{n}, 0, \dots, 0, \frac{3}{4}, 0, \dots}_{n}\right),$$

$$R_n = 1 + \sup_{\substack{m \neq n \\ 3 \le m < \infty}} \left\{\frac{1}{1 - 1/(nm) - \sqrt{(1 - 1/m^2)(1 - 1/n^2)}}\right\}.$$

Пусть X — пространство l_2 с нормой $\|x\|_{S'}$ и $L=\{x=\{\xi_i\}\in l_2\}$ $\xi_i = 0, i = 1, 2$. Тогда X рефлексивно, строго выпукло и L — чебышевское подпространство фактор-размерности 2 в X. Положим для $n \ge 3$

$$x_n = \left(\sqrt{1 - 1/n^2}, \frac{1}{n}, 0, \dots, 0, \frac{3}{4}, 0, \dots\right).$$

^{*} Множество в л.н.п. Х называется ограниченно компактным, если его пересечение с любым замкнутым шаром компактно в себе.

Нетрудно убедиться, что последовательность $\{x_n\} \subset L^0$ ограничена и некомпактна. Значит, в силу теоремы 4, метрическая проекция T_L разрывна.

Уральский государственный университет им. А. М. Горького Свердловск Поступило 27 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. В. Ефимов, С. Б. Стечкин, ДАН, 118, № 1, 17 (1958). ² Л. П. Власов, Матем. заметки, 7, № 5, 593 (1970). ³ А. Л. Гаркави, Матем. сборн., 62, № 1, 104 (1963). ⁴ V. L. Klee, Math. Ann., 142, № 3, 292 (1961). ⁵ Е. А. Michael, Trans. Am. Math. Soc., 71, 152 (1951). ⁶ I. Singer, Rev. Roumaine de Math. pure et appl., 6, № 2, 357 (1961). ⁷ Е. W. Cheney, D. E. Wulbert, Math. Scand., 24, 113 (1969). ⁸ Р. D. Morris, Duke Math. J., 35, № 4, 799 (1968). ⁹ Е. В. Ошман, ДАН, 195, № 3, 555 (1970).