УДК 577.1 *БИОХИМИЯ*

В. А. ШУВАЛОВ, член-корреспондент АН СССР А. А. КРАСНОВСКИЙ

СВЯЗЬ ПЕРВОГО КОМПОНЕНТА ПОСЛЕСВЕЧЕНИЯ С ФОТОПЕРЕНОСОМ ЭЛЕКТРОНА В ХЛОРОПЛАСТАХ

В предшествовавших работах (1) нами было проведено феноменологическое исследование процесса послесвечения. В результате этого было выделено пять основных компонентов послесвечения.

В данной работе основное внимание было уделено изучению природы первого (миллисекундного) компонента послесвечения, время жизни которого мало зависит от температуры от -170 до 40° (1).

Исследование послесвечения хлоропластов осуществлялось на импульсной фосфороскопической установке, описанной ранее (2). Возбуждение производилось импульсами света с $\lambda \ge 630$ мµ и длительностью 10^{-6} сек., следующими друг за другом с частотой 50 гц. Регистрировалась кинетика затухания послесвечения, начиная с $4 \cdot 10^{-4}$ сек. после центра вспышки. Спектры возбуждения и излучения послесвечения измерялись с помощью монохроматора с разрешением 5 мµ. Опыты производились на хлоропластах гороха, консервированных замораживанием в сухом льду (3). Перед измерением хлоропласты разводились десятикратно дистиллированной водой и центрифугировались при 1000 g в течение 1 мин. для удаления крупных ассоциатов. Концентрация хлорофилла в опыте достигала 15 µг/мл. Измерение первого компонента послесвечения в основном производилось при -40° , что позволяло на несколько порядков уменьшить вклад секундных компонентов послесвечения, а также исследовать свечение в условиях блокирования энзиматических процессов.

Нами была предпринята попытка исследовать свечение при -40° в присутствии доноров и акцепторов электрона 2 фотосистемы с тем, чтобы попытаться установить связь свечения с актами переноса электрона в реакционном центре этой фотосистемы. В качестве акцепторов электрона использовали феррицианид ($Fe^{3+}U$), $Fe(NH_4)$ (SO_4)₂-(Fe_3 +AK), n-бензохинон, 2,6-дихлорфенолиндофенол, а также метилвиологен. В качестве возможных доноров электрона — ионы двухвалентного марганца (4), гидроксиламин, гидразин, аскорбат и восстановленный 2,6-дихлорфенолиндофенол.

Послесвечение хлоропластов при -40° усиливается в 10-20 раз в присутствии Fe^{3+} Ц и Fe^{3+} АК, тогда как Fe^{2+} Ц и Fe^{2+} АК не влияли значительно на послесвечение (рис. 1). Добавление других акцепторов электрона не изменяло существенно контрольного уровня послесвечения. Одновременное добавление к хлоропластам Fe^{3+} Ц и 3-[3,4-дихлорфенил]-1,1-диметилмочевины (ДХФМ) в концентрации 10^{-4} мол/л незначительно уменьшает интенсивность послесвечения. Кинетика затухания послесвечения характеризуется одним компонентом с $\tau \simeq 6 \cdot 10^{-4}$ сек. Интенсивность свечения существенно не зависит от рН в районе 4,5-8,5. Можно было предположить, что возникающее послесвечение связано с обратимым переносом электрона на Fe^{3+} .

Существенное влияние на послесвечение оказывают также ионы Mn^{2+} . При добавлении $MnCl_2$ в концентрации 10^{-2} мол/л наблюдается резкий всплеск послесвечения в первый момент освещения, после чего стационарная интенсивность послесвечения быстро спадает к уровню, который превышает уровень свечения контрольных хлоропластов в 20-30 раз (рис. 1).

После периода темноты в несколько десятков секунд описанная кинетика повторяется. Действие ДХФМ в концентрации 10^{-4} мол/л приводит к почти полному подавлению наблюдаемого послесвечения. При рН 4,5 свечение во время освещения спадает до уровня свечения контрольных хлоропластов, что не наблюдается при рН 6,0 и 8,5. Кинетика затухания свечения имеет два компонента с $\tau \simeq 10^{-3}$ и 0,1 сек. (рис. 1). Другие использованные доноры электрона не изменяли свечения контрольных хлоропластов.

Как в случае Fe³⁺Ц, так и в случае MnCl₂ послесвечение имело спектр возбуждения, совпадающий со спектром поглощения хлорофилла в крас-

ной области спектра, а спектр излучения, совпадающий со спектром флуоресценции хлорофилла.

Было найдено также, что хлористые соли щелочноземельметаллов $MgCl_2$, CaCl₂, SrCl₂ индуцируют послесвечение, которое по интенсивности, кинетике затухания и чувствительности к действию ДХФМ тождественно свечению в присутствии MnCl₂. Соли, обозначаемые нами MeCl₂, можно рассматривать как фактор, влияющий на состояние мембраны (⁵, ⁶), окружающей реакционный центр. Было предположено, что если Fe³⁺ и MeCl₂ вызывают образование ион-радикалов хлорофилла реакционного центра (хл.р.ц.) противоположного знака, то можно ожидать при одновременном присутствии Fe³⁺ и MeCl₂ ингибирования накоплерадикалов пигмента и уменьшения послесвечения.

Чтобы проверить это предположение, было изучено одновременное действие Fe³⁺AK и MnCl₂ на послесвечение хлоро-

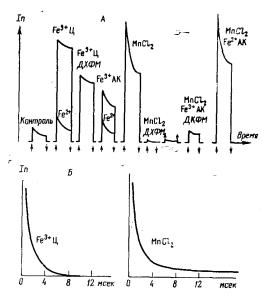


Рис. 1. Зависимость стационарной интенсивности (A) и кинетики затухания (B) послесвечения хлоропластов при -40° от присутствия акцепторов и доноров электрона фотосистемы 2 (в опыте 7 на A одновременно присутствуют MnCl₂ и Fe³+AK). Стрелки вверх — включение возбуждающего света, стрелки внизего выключение. Величина $\lambda_{\text{воз}} \geqslant 630$ мµ, $\lambda_{\text{пз.т}} \geqslant 670$ мµ. Концентрации: Fe³+Ц и Fe³+AK 10^{-4} M; MnCl₂ 10^{-2} M. Время освещения в каждом опыте на A 50 сек.

пластов при -40° . Оказалось, что одновременное присутствие агентов, вызывающих в отдельности резкое усиление послесвечения контрольных хлоропластов, приводит к почти полному подавлению послесвечения при -40° (рис. 1). Добавление в эту систему ДХФМ частично восстанавливает свечение, имеющее кинетику, которая наблюдается при добавлении $Fe^{3+}AK$. $Fe^{2+}AK$ не изменяет послесвечения, индуцируемого $MnCl_2$ (рис. 1).

Таким образом, полученные данные можно понять с точки зрения обратимого переноса электрона между хл.р.ц., акцептором электрона ($\mathrm{Fe^{3+}}$) и донором электрона, который активируется в присутствии $\mathrm{MeCl_2}$. Существенно, что кинетика послесвечения в присутствии $\mathrm{Fe^{3+}}$ Ц и $\mathrm{MeCl_2}$ (рис. 1) соответствует кинетике исчезновения катион- и анион-радикалов хлорофилла в растворах, измеренной с помощью флеш-фотолиза (7).

Вместе с тем остается неясным вопрос о механизме активации донора электрона в присутствии $MeCl_2$. В качестве подхода к решению этого вопроса было исследовано действие различных солей щелочноземельных металяов и Mn^{2+} , а также катионов других групп. Было найдено, что хлористые соли Na^+ , K^+ , Fe^{2+} , Fe^{3+} , Al^{3+} вызывают активацию свечения, интенсивность которого, однако, в несколько раз меньше, чем в присутствии

MnCl₂ и MgCl₂; CrCl₃, CoCl₂, ZnCl₂, CuCl₂ не оказывали влияния на свечение или приводили к его ингибированию; наиболее сильным индуцирующим действием обладали хлористые соли Mn²⁺ и щелочноземельных металлов. Было найдено, что не существует строгой специфичности действия ионов указанной группы — в качестве катиона могут быть ионы Mg²⁺, Mn²⁺, Ca²⁺, Sr²⁺, в качестве аниона — Cl⁻, Br⁻. Однако если сумма ионных радиусов использованных катионов и анионов меньше чем 2.5 Å (MgF₂, BeCl₂) или больше 3,0 Å (MgI₂, BaCl₂, Mg(NO₃)₂, MgSO₄, MnSO₄), наблюпается резкое уменьшение пействия соли на послесвечения контрольных хлоропластов (рис. 2). Эти факты указывают на то, что для возникновения послесвечения необходимо присутствие не только иона щелочноземельного металла или Mn²⁺, но и соответствующего однозарядного аниона так, чтобы сумма понных радиусов лежала в интервале от 2,5 до 3,0 Å. Характерно, что в присутствии Fe³⁺AK действие солей на послесвечение имеет ингибирующий характер, причем наблюдается та же закономерность суммы ионных радиусов (рис. 2).

Для проверки гипотезы об усилении потока электронов на Fe³⁺ в присутствии MeCl₂ было проведено измерение скорости восстановления Fe³⁺Ц

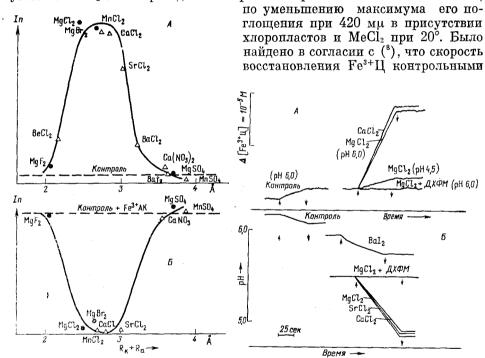


Рис. 2. Зависимость интенсивности послесвечения хлоропластов при -40° от суммы ионных радиусов катиона и аниона $(R_{\rm K}+R_{\rm a})$ в добавленных солях $(10^{-2}$ M) для контроля (A) и контроля в присутствии ${\rm Fe^{3+}AK}$ (B)

Рис. 3. Фотореакции в хлоропластах при 20° в зависимости от присутствия $MeCl_2$ (10^{-2} M): фотовосстановление Fe^{3+} Ц (A); фотовыделение H^+ в присутствии Fe^{3+} Ц (B)

хлоропластами резко усиливается в присутствии $MgCl_2$, $CaCl_2$, $SrCl_2$ (рис. 3). Низкое значение рН уменьшает скорость реакции, которая полностью ингибируется ДХФМ ($5\cdot 10^{-6}~M$). Тот же самый эффект наблюдается по фотовыделению H^+ из хлоропластов в присутствии Fe^{3+} Ц и $MeCl_2$ (рис. 3). Восстановление Fe^{3+} Ц и выделение H^+ происходит в стехиометрическом соотношении.

Эти факты подтверждают концепцию связи послесвечения с переносом электрона; стехиометрическое выделение H^+ свидетельствует скорее в пользу участия воды или гидроксильных ионов в качестве донора электронов.

Таким образом, процесс переноса электрона при -40° , сопровождаемый послесвечением, можно представить в виде следующих гипотетиче-

ских уравнений:

$$X_{\pi}H + Fe^{2+} + h\nu \Rightarrow X_{\pi}H^{+} + Fe^{2+}, \tag{1}$$

обратный процесс сопровождается послесвечением с $\tau \simeq 6 \cdot 10^{-4}$ сек.;

$$H_2O + X\pi H + h\nu \stackrel{\text{MeCl}_2}{\rightleftharpoons} OH \cdot + \cdot X\pi H^- + H^+,$$
 (2)

обратный процесс сопровождается послесвечением с $\tau \simeq 10^{-3}$ и 0.1 сек.;

$$H_2O + Fe^{3+} + hv \xrightarrow{X\pi H} OH \cdot + Fe^{2+} + H^+,$$
 (3)

процесс не приводит к накоплению радикалов хлорофилла и не сопровождается послесвечением.

Механизм действия MeCl₂ может быть понят с точки зрения влияния на состояние мембраны хлоропластов (⁵, ⁶). Однако имеются факты, указывающие на непосредственное взаимодействие MeCl₂ с хл.р.ц. Сюда относится известный факт окисления ионов марганца хлоропластами (⁴), а также обнаруженное в данной работе окисление ионов иода (КЈ) до молекулярного иода, которое полностью блокировалось ДХФМ.

Мы попытались понять полученные в работе факты с помощью следующего представления. Хл.р.ц. погружен в мембрану, соединенную с окружающей средой марганцевыми каналами. Функция Me²⁺, образующего плотную гидратную оболочку, заключается в переносе H₂O из внешней среды к хл.р.ц. с помощью образования координационных связей с кислородсодержащими группировками канала. Вслед за Me²⁺ в канал проникает Cl⁻, который фиксируется в определенных ее полостях, вблизи хл.р.ц. Кислород молекулы ДХФМ, вероятно, образует водородную связь с атомами кислорода мембраны, а два ее атома хлора занимают полости мембраны, предназначенные для Cl⁻, что блокирует реакцию переноса H₂O к хл.р.ц.

Институт биохимин им. А. Н. Баха Академии наук СССР Москва Поступило 27 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Шувалов, Ф. Ф. Литвин, Молекулярная биология, 3, 59 (1969).

² В. А. Шувалов, А. А. Красновский, Молекулярная биология, 5, 698 (1971).

³ Р. М. Бекина, А. А. Красновский, Биохимия, 33, 178 (1968).

⁴ R. Н. Кепten, Р. J. G. Мапп, Biochem. J., 61, 279 (1955).

⁵ Д. М. Островский, И. М. Цфасман, Н. С. Гельман, Биохимия, 34, 993 (1969).

⁶ W. Van Iterson, J. Opden Kamp, Bacteriol., 99, 304 (1969).

⁷ А. В. Карякин, А. К. Чибисов, Сборн. Элементарные фотопроцессы в молекулах, «Наука», 1966, стр. 296.

⁸ S. Isawa, R. L. Heath, G. Hind, Biochim. et biophys. acta, 180, 388 (1969).