## Доклады Академии наук СССР 1972. Том 206, № 3

## ФИЗИЧЕСКАЯ ХИМИЯ

### Г. К. АВЕРКИЕВА, В. Д. ПРОЧУХАН, М. ТАШТАНОВА

# О ВЛИЯНИИ ОТКЛОНЕНИЙ ОТ СТЕХИОМЕТРИИ НА СВОЙСТВА ПОЛУПРОВОДНИКА ZnSiAs<sub>2</sub>

(Представлено академиком В. М. Тучкевичем 8 II 1972)

Перспективные для практических применений полупроводники типа  $A^2B^4C_2^{\ 5}$  обладают более нирокой областью гомогенности, чем их бинарные электронные аналоги типа  $A^3B^5$ . В связи с этим внешние условия при термической обработке или в процессе роста кристаллов  $A^2B^4C_2^{\ 5}$  оказывают на их полупроводниковые свойства более существенное влияние. Подобного рода исследования, выполненные на монокристаллах  $CdSiAs_2$ , показали, что концептрация свободных носителей заряда в этом полупроводнике может быть изменена в пределах нескольких порядков ( $^4$ ,  $^2$ ). В то же время кристаллы  $ZnSiAs_2$ — одного из наиболее широкозонных полупроводников типа  $A^2B^4C_2^{\ 5}$ , полученные рядом автором, не были исследованы в этом аспекте ( $^3$ ,  $^4$ ).

Нами было изучено влияние химического состава расплава и температуры кристаллизации на свойства кристаллов ZnSiAs<sub>2</sub>. Результаты приведены в табл. 1, из данных которой видно, что при фиксированном химическом составе растворителя концентрация дырок в ZnSiAs<sub>2</sub> падает при понижении температуры кристаллизации, причем подвижность дырок после некоторого увеличения также начинает уменьшаться. По-видимому, пони-

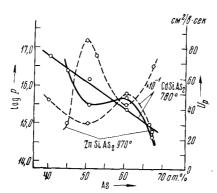



Рис. 1. Зависимость концентрации и подвижности дырок в кристаллах ZnSiAs<sub>2</sub> и CdSiAs<sub>2</sub> от содержания мышьяка в растворителе. Сплошные кривые — концентрация дырок, пунктирные — подвижность дырок

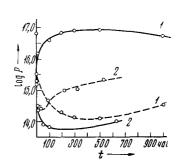



Рис. 2. Зависимость концентрации дырок в кристаллах ZnSiAs<sub>2</sub> (2) и CdSiAs<sub>2</sub> (1) от времени отжига. Сплошные кривые — отжиг в парах аниона, пунктирные — отжиг в парах катиона

жение температуры кристаллизации сопровождается увеличением количества точечных дефектов и степени компенсации полупроводника ZnSiAs<sub>2</sub>. При фиксированной температуре кристаллизации концентрация и подвижность дырок зависят от содержания мышьяка в растворителе, причем в целом наблюдается тенденция к уменьшению концентрации дырок при увеличении содержания мышьяка. Результаты экспериментов на ZnSiAs<sub>2</sub> гра-

| Растворитель |          |          | - 45                |                                                                                                           | $v_{\rm p}$ , |
|--------------|----------|----------|---------------------|-----------------------------------------------------------------------------------------------------------|---------------|
| Zn, ar.%     | Аз, ат.% | Подпитка | T <sub>Kp</sub> , ℃ | P, cm <sup>-3</sup>                                                                                       | см²/сек       |
| 33,3         | 66,7     | Si       | 980                 | $ \begin{array}{r} 1 \cdot 10^{15} \\ 5 \cdot 10^{14} \\ 4 \cdot 10^{14} \\ 2 \cdot 10^{14} \end{array} $ | 60            |
| 33,3         | 66,7     | Si       | 970                 |                                                                                                           | 70            |
| 33,3         | 66,7     | Si       | 960                 |                                                                                                           | 50            |
| 33,3         | 66,7     | Si       | 900                 |                                                                                                           | 30            |
| 40           | 60       | Si       | 970                 | 5·10 <sup>15</sup>                                                                                        | 40            |
| 40           | 60       | Si       | 960                 | 3·10 <sup>15</sup>                                                                                        | 55            |
| 40           | 60       | Si       | 900                 | 6·10 <sup>14</sup>                                                                                        | 15            |
| 44,5         | 55,5     | SiAs     | 960                 | $1 \cdot 10^{15}$ $3 \cdot 10^{15}$ $1 \cdot 10^{15}$                                                     | 65            |
| 50           | 50       | SiAs     | 970                 |                                                                                                           | 85            |
| 50           | 50       | SiAs     | 900                 |                                                                                                           | 50            |
| 55,5         | 44,5     | SiAs     | 970                 | 3·10 <sup>16</sup>                                                                                        | 30            |

фически сопоставлены на рис. 1 с дапными такого рода, полученными при исследовании  $CdSiAs_2$  авторами (¹). Как видно, для обоих соединений характерна тенденция к уменьшению равповесной концентрации дырок при увеличении содержания аниона в расплаве. Эта особенность соединений типа  $A^2B^4C_2^5$  связана с амфотерностью элемента IV группы, иными словами, с размещением некоторой части атомов кремния в узлах мышьяка или элемента II группы. Нелинейный характер изменения концентрации и подвижности дырок в  $ZnSiAs_2$  приводит к мысли о сложной природе

химических сдвигов, имеющих место при изменении химического состава растворителя. Помимо указанных выше дефектов, сле-

помимо указанных выше дефектов, следует принять во внимание возможность образования вакансий, например, в узлах цинка и мышьяка. Интересно отметить, что кривые изменения подвижности в кристаллах CdSiAs<sub>2</sub> и ZnSiAs<sub>2</sub> являются зеркальным отображением друг друга. Это обстоятельство приводит к мысли о разном характере процессов, развивающихся в рассматриваемых соединениях.

Для подтверждения сказанного можно сопоставить результаты выполненных нами исследований влияния термической обработки кристаллов ZnSiAs<sub>2</sub> в различных средах с подобными результатами, полученными авторами (²) на кристаллах CdSiAs<sub>2</sub>. Как видно из рис. 2 и 3, на которых представлено изменение концентрации и подвижности дырок, кривые концентрации в CdSiAs<sub>2</sub> и ZnSiAs<sub>2</sub> в общих чертах являются зеркальным отображением друг друга, в то время как кривые подвижности по своему характеру имеют относительное сходство. Поэтому можно предполо-

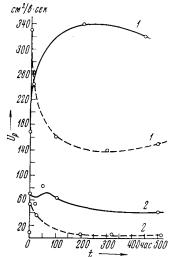



Рис. 3. Зависимость подвижности дырок в соединении ZnSiAs<sub>2</sub> (2) и CdSiAs<sub>2</sub> (1) от времени отжига. Обозначения те же, что на рис. 2

жить, что в обоих соединениях при термической обработке количество дефектов изменяется примерно одинаково, однако их электрическое действие различно.

Сопоставляя кривые изменения концентрации и подвижности дырок, можно объяснить их форму, например, такой моделью процессов: на первых стадиях отжига в парах мышьяка в CdSiAs<sub>2</sub> происходит «залечивание»

вакансий в узлах As, а в ZnSiAs<sub>2</sub> — замещение кремнием узлов ципка, что приводит к возрастанию концентрации и подвижности дырок в первом случае, в то время как во втором случае уменьшается только концентрация дырок при небольших колебаниях подвижности. На второй стадии отжига в CdSiAs<sub>2</sub> сказывается обладающий, по-видимому, большой энергией активации процесс удаления амфотерного кремния из анионной подрешетки и образование вакансий в узлах кадмия, а в ZiSiAs<sub>2</sub> — процесс образования вакансий в узлах ципка, что приводит к медленному падению концентрации и подвижности дырок в первом случае, в то время как во втором случае концентрация медленно повышается, а подвижность так же медленно падает. Подобным образом можно объяснить и кривые, соответствующие отжигу в парах элементов II группы.

Однако для достоверной интерпретации полученных данных необходимо более детальное исследование явлений и более полные сведения о знаке и величине эффективных зарядов атомов, слагающих решетку халькопирита  $(^5, ^6)$ . Кроме того, предложенная модель не учитывает возможности внедрения атомов в междоузлия. Тем не менее, существенное и закономерное изменение свойств полупроводников типа  $A^2B^4C_2^5$  в зависимости от внешних условий доказано экспериментально.

Физико-технический институт им. А. Ф. Иоффе Академии наук СССР Лепинград Поступило 1 II 1972

#### ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. К. Аверкиева, Н. А. Горюнова и др., ДАН, 191, № 4, 811 (1970). ² С. К. Аverkieva, N. А. Goryunova et al., Phys. Status Solidi. (a). 5, 571 (1971). ³ Д. Э. Снелл, Г. Д. Баррелл и др., Матер. IX Международн. конфер. по полупроводникам в Москве, 1968 г., 2, Л., 1969, стр. 1297. ⁴ А. J. Spring-Thrope, R. W. Monk, Physica Status Solidi (a), 1, № 1 (1970). ⁵ V. K. Yarmarkin, V. S. Grigoreva, V. D. Prochukhan, Phys. Status Solidi (b), 48, 129 (1971). ⁶ V. K. Yarmarkin, L. V. Kradinova, V. D. Prochukhan, Physica Status Solidi (a), 5, № 2 (1971).