УДК 546.155 ХИМИЯ

Л. А. АЗАРОВА, Е. Е. ВИНОГРАДОВ, Е. М. МИХАЙЛОВА В. И. ПАХОМОВ

О ПОДОБИИ СТРУКТУР КРИСТАЛЛОВ ТЕТРАГОНАЛЬНОЙ β -МОДИФИКАЦИИ LiJO $_3$ и Ce(JO $_3$) $_4$

(Представлено академиком И. В. Тананаевым 21 IV 1972)

Структуры простых иодатов можно разделить на две большие группы. К первой группе относятся кристаллы, в которых атом иода находится внутри искаженного октаэдра из атомов кислорода: α -LiJO₃ (1, 2), KJO_3 (3), $RbJO_3$, $CsJO_3$ (3), NH_4JO_3 (4). Bo всех этих кристаллах октаэдр деформирован так, что образуется JO₃-группа в виде пирамиды. Расстояния Ј-О внутри этой группы мало меняются от соединения к соединению и среднее значение лежит около 1,8 А. Расстояния Ј...О до трех остальных атомов кислорода больше примерно на ангстрем $(\sim 2.8 \,\text{Å})$. По расположению в пространстве октаэдров $\mathrm{JO_6}$ осуществляется два основных типа структур: искаженная плотнейшая гексагональная упаковка атомов кислорода (гексагональная модификация LiJO₃) и искаженная плотнейшая кубическая упаковка атомов кислорода (КЈО₃, RbJO₃, CsJO₃, NH₄JO₃).

Ко второй группе модатов относятся соединения, в которых число соседних атомов кислорода вокруг атома иода больше шести. Как и в первой группе иодатов, три атома кислорода на расстояниях около 1,8 А образуют пирамидальную иодатную группу. Остальные атомы кислорода (число их достигает пяти) находятся от атома иода на расстояниях 2,5-3,2 Å, дополняя многогранник вокруг иода до весьма сложной, неправильной фигуры. Большое различие двух групп иодатов заключается в том, что в первой группе имеется больщое количество нецентросимметричных кристаллов, обладающих весьма ценными для использования в электронике свойствами: пироэффектом (NH_4JO_3) пьезоэффектом α -LiJO₃, КЈОз (5,6), генерацией второй гармоники дазерного излучения (пелинейными свойствами) α -LiJO $_3$ (7), KJO $_3$ (8), в то время как во второй группе иодатов нет ни одного нецентросимметричного кристалла. Таким образом прослеживается четкая связь между координационным многогранником пода и симметрией всего кристалла. Следует также отметить подобие некоторых фрагментов структур иодатов первой и второй групп. Почти во всех простых иодатах присутствует один и тот же строительный элемент: тетрамер из четырех ЈО_з-групп. Этот тетрамер может быть довольно симметричным: его собственная симметрия 4 в $Zr(JO_3)_4$ и $\overline{4}$ в Се (ЈО₃) 4. Дальнейшая укладка тетрамеров может привести к центросимметричному или нецентросимметричному мотиву. Судя по всему, симметрия всего мотива в основном определяется природой иона, входящего внутрь тетрамера.

В этой связи интересен диморфизм иодата лития. Обычно из водных растворов кристаллизуется гексагональная, более устойчивая при комнатной температуре, модификация. Тетрагональная модификация возникает, если нагреть гексагональную модификацию выше 247° С (°). Она получается также из пересыщенных растворов иодата лития и при комнатной температуре (10). Сразу же напрашивается предположение, что в более концентрированных растворах более вероятно возникновение

тетрамеров, которые и служат «исходными кирпичами» для построения кристаллов. Для проверки этого предположения нами было проведено рентгенографическое изучение структуры кристаллов β -модификации LiJO₃. Игольчатые кристаллы иодата лития исследовались методами качания и фотографирования обратной решетки на MoK-излучении. Из полученных рентгенограмм следует, что эта модификация принадлежит к тетрагональной сингонии (Лауэ-симметрия 4/m) с параметрами решетки: a = 9.66 + 0.02 Å, c = 6.21 + 0.01 Å. Это хорошо совпадает с данными,

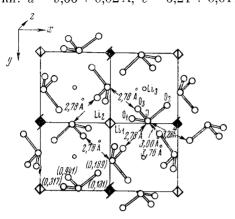


Рис. 1. Проекция структуры кристалла β -LiJO $_3$ на плоскость 001. Цифры в скобках указывают на высоты атомов по оси z

полученными ранее Либерцем (9): a=9.712+0.005 Å, c=6.146+0.005 Å. 405 независимых отражений, полученных на рентгенограммах фотографирования обратной решетки (развертки hk0-hk4)использовались для построения функции Патерсона P(uvw). Интенсивности отражений оценивались визуально с помощью марок почернения, получении значений $\Gamma(hkl)$ учитывались фактор Лоренца и поляризационный. Распределение мумов в функции P(uvw) соответпространственной ствует P42/n с 8 формульными единицами в элементарной ячейке, что было уже найдено ранее (9). Найденные из P(uvw) координаты атома иода использовались затем для построе-

ния трехмерного ряда $\rho(xyz)$. Из этого ряда были найдены координаты трех атомов кислорода. Дальнейшее уточнение найденной модели структуры проводилось методом локализации максимумов в трехмерном ряду $\rho(xyz)$ и методом наименьших квадратов. Так как из рентгеновского эксперимента определить положение понов лития весьма трудно, координаты атомов лития были найдены из геометрических соображений. В **т**абл. 1 приводятся координаты атомов и индивидуальные температурные постоянные после метода наименьших квадратов (фактор недостоверности R=16.4%, общая температурная постоянная B=0.46 Ų).

Таблица 1 Координаты атомов и индивидуальные температурные постоянные для кристалла β-LiJO₃

Таблица 2
Координаты атомов и индивидуальные температурные постоянные для к эисталла Ce(JO₃)₄

	J	O ₁	O ₂	O ₃	Liı	Liz	Li ₃		J	O ₁	02	O ₃	Ce
$x \\ y \\ z \\ B_j$	0,993 0,131	$0,973 \\ 0,317$	0,411 0,864 0,189 1,37	$0,907 \\ 0,941$	0	0 0 5 0,5	0,250 0,750 0,250	$x \\ y \\ z \\ B_i$		$0,940 \\ 0,314$	0,410 0,875 0,025 1,5	0,920	0

Сразу же обращает на себя внимание большое подобие структур β -LiJO $_3$ и Ce(JO $_3$) $_4$. У обоих кристаллов одинаковые пространственные группы ($P4_2/n$), близкие значения параметров решетки (a=9,90 Å, c=5,32 Å для Ce(JO $_3$) $_4$). В табл. 2 приводятся значения координат атомов для кристалла Ce(JO $_3$) $_4$ из работы (11).

Как и в кристалле $Ce(JO_3)_4$, в β -Li JO_3 можно выделить пирамидальную JO_3 -группу с расстояниями $J-O_4$ 1,79 Å, $J-O_2$ 1,63 Å и $J-O_3$ 1,71 Å. Так же как и в $Ce(JO_3)_4$ (характерном представителе иодатов второй

группы) в β -LiJO₃ образуется тетрамер из иодатных групп с симметрией $\overline{4}$ (рис. 1) за счет взаимодействия атомов иода и кислорода (расстояние $J \dots O_3 2.78 \, \text{Å}$).

Остальные четыре расстояния $J\dots O$ длиннее ($J\dots O_2$ 3,00 Å, $J\dots O_2'$ 3,28 Å, $J\dots O_2''$ 3,67 Å, $J\dots O_3'$ 3,70 Å). Различие структур кристаллов $Ce(JO_3)$, и β -LiJO $_3$ в том, что в β -LiJO $_3$, кроме положения ионов лития на оси $\overline{4}$ (координационный многогранник — тетраэдр с расстояниями Li_1 — O_3 1,89 Å), ионы лития для соблюдения стехиометрии должны заполнить две позиции: одну на оси $\overline{4}$ с координатами 0, 0, 0 (координационный многогранник вокруг лития — антипризма с расстояниями Li_2 — O_2 2,20 Å и Li_2 — O_3 2,48 Å) и другую в центре инверсии с координатами 0,250; 0,750; 0,250 (координационный многогранник — сильноискаженный октаэдр с расстояниями Li_3 — O_1 1,94 Å, Li_3 — O_3 2,38 Å, Li_3 — O_2 2,48 Å).

Таким образом, наблюдается весьма необычный факт большого подобия мотивов расположения иодатных групп в кристаллах иодата четырехвалентного церия и тетрагональной модификации иодата одновалентного лития. Этот факт указывает на громадную роль иодатного мотива в построении кристалла.

Институт общей и неорганической химии им. Н. С. Курнакова Академии наук СССР Москва Поступило 30 III 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. Boer, F. Bolhuis, Acta crystallogr., 21, 841 (1966). ² A. Rosenzweig, B. Morosin, Acta crystallogr., 20, 758 (1966). ³ F. Herlach, Helvetica physica acta, 34, 305 (1961). ⁴ E. T. Keve, S. C. Abrahams, K. L. Bernstein, Acta crystallogr., A25, Suppl. 53, 58 (1969). ⁵ S. Haussuhl, Phys. Stat. Sol., 29, K159 (1968). ⁶ И. С. Рез, В. И. Пахомов пдр., Вопросы радиоэлектроники, сер. Детали компоненты, в. 7, 85 (1961). ⁷ G. Nath, S. Haussuhl, Appl. Phys. Letters, 14, 154 (1969); F. R. Nash, J. G. Bergman et al., J. Appl. Phys., 40, 2504 (1969). ⁸ A. А. Филимонов, Л. Г. Ломова и др., Кристаллография, 10, 255 (1965). ⁹ J. Liebertz, Zs. Phys. Chem., N. F., 67, 94 (1969). ¹⁰ S. Matsumura, Mat. Res. Bull., 6, 469 (1971). ¹¹ D. T. Cromer, A. C. Larson, Acta crystallogr., 9, 1015 (1956).