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LEPTON DECAY CONSTANTS OF THE PSEUDOSCALAR
MESONS IN THE RELATIVISTIC HAMILTONIAN
DYNAMICS

© 2003 V.V. Andreev!, A.F. Krutov?, O.I. Shro®, V.E. Troitsky*
Abstract

Calculation of the lepton decay constants of the heavy-light pseudoscalar mesons B , By , D ,
D is performed in the framework of instant form of relativistic Hamiltonian dynamics (RHD).
Interaction between constituent quarks is given by the smeared potential with linear rise at large
distances, Coulomb behavior at small distances and spin-spin interaction. Wave functions in the
sense of RHD are calculated approximately by the variational method. Masses of the light quarks
are fixed by the fitting of lepton decays constants of pion and kaon. The theoretical uncertainties
in the values of lepton constants associated with uncertainties in the quark masses and heavy—
light meson masses are estimated. Results are in good agreement with lattice calculations and
experiments.

1.Introduction

It is well known that the lepton decays of the heavy mesons are the important source
of information about the parameters of Standard Model (SM) (e.g. Cabbibo— Kobayashi-
Maskawa matrix elements), and also can serve for searches of physics beyond SM (see
e.g. [1]). The retrieval of this information calls for the precise calculations of the lepton
decay constants. The values of these constants are determined by the structure of the
mesons, and therefore the nonperturbative approaches are necessary for the calculations.

There exist different approaches to this problem, for example, the calculations on
lattices [2, 3, 4, 5, 6, 7, 8, 9, 10], QCD sum rules (see e.g. [11, 12, 13|), and constituent
quark model (CQM) (see e.g. review [14] and references therein).

Results of computation of the lepton decay constants in the listed approaches are
in rather poor agreement with each other and often have a sufficiently large theoretical
uncertainties. So, the development of new approaches to this problem and the realization
of new calculations are necessary nowadays. In particular, the calculations have to include
the relativistic effects by correct way.

CQM is widely and successfully used for the description of hadron properties at low
and intermediate energies [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. The
reasons for this are well known: first, CQM uses the physically adequate degrees of
freedom; second, CQM describes nonperturbative effects. These facts give the possibility
to use CQM for the investigation of so-called "soft"structure of hadrons in contrast to
QCD (see e.g., [29]).

Among the relativistic approaches the different forms of relativistic CQM hold an
important position, for example, quasipotential approach [18], dispersion relations [23],

LAndreev Victor Vasil’evich, e-mail: andreev@gsu.unibel.by, Department of Theoretical Physics,
Gomel State University, Sovietskaya St., 104, Gomel, 246019, Belarus.

2Krutov Alexander Fedorovich, e-mail: krutov@ssu.samara.ru, Department of General and Theoretical
Physics, Samara State University, Ac. Pavlov St., 1, Samara, 443011, Russia.

3Shro Oleg Ivanovich, e-mail: oshro@ssu.samara.ru, Department of Computational Physics, Samara
State University, Ac. Pavlov St., 1, Samara, 443011, Russia.

4Troitsky Vadim Eugenievich, e-mail: troitsky@theory.sinp.msu.ru, D.V. Skobeltsyn Institute of
Nuclear Physics, Moscow State University, Vorobjovy Gory, Moscow, 119899, Russia.



Lepton decays constants of the pseudoscalar mesons. . . 85

and different forms of Relativistic Hamiltonian Dynamics (RHD): light-front dynamics
[16, 24, 28] and point dynamics [22, 25| (the RHD has been detailed in references [30,
31, 32]).

The main feature of CQM versus QCD is the extraction of a finite number of the
most important degrees of freedom needed to the hadron. Dynamical effects of QCD are
incorporated in CQM through the effective (constituent) quark mass and internal quark
structure in terms of the quark form factors. So, in the framework of CQM, constituent
quarks have all the material properties of free particles and interact with each other
through the confinement potential. This means that the constituent quark is characterized
by an effective mass, a mean-square radius and so on. Let us remark that the concept of
extended constituent quarks also appears in some quantum field theory models (see e.g.
[33]). In this context one can imagine that CQM is initiated by QCD. However, it is very
important for us to remind ourselves that CQM is not a direct consequence of QCD, but
a very successful phenomenological model.

In this work for the calculation of the lepton decay constants of the heavy—light
pseudoscalar mesons fg, fps, fp, fps we use the instant form of RHD in the version
developed by the authors [17, 19, 20, 21, 27].

Contrary to field theory, RHD is dealing with finite number of degrees of freedom from
the very beginning. This is certainly a kind of a model approach. The preserving of the
Poincaré algebra ensures the relativistic invariance. So, the covariance of the description
in the frame of RHD is due to the existence of the unique unitary representation of the
inhomogeneous group SL(2,C) on the Hilbert space of composite system states with
finite number of degrees of freedom [30]. The mathematics of RHD is similar to that of
nonrelativistic quantum mechanics and permits to assimilate the sophisticated methods
of phenomenological potentials and can be generalized to describe three or more particles.

The distinctive property of our version of the instant form of RHD is the method
of construction of current transition matrix elements [20, 27, 34], which includes the
relativistic covariance conditions. Our approach to the construction of the current operator
includes the following main points:

1. We extract from the current matrix element of composite system the reduced matrix
elements (form factors) containing the dynamical information about the process. In
general these form factors are generalized functions.

2. Along with form factors we extract from the matrix element a part which defines
the symmetry properties of the current: the transformation properties under Lorentz
transformation, discrete symmetries, conservation laws etc.

3. The physical approximations which are used to calculate the current are formulated
not in terms of operators but in terms of form factors.

This approach was used successfully for the description of electromagnetic properties
of light mesons [17, 20] and semileptonic decays of light and heavy—light mesons [34, 35].

In general the different model of quark—antiquark interaction can be used in RHD. In
our work we use the interaction which incorporates wide varieties of such models, that
is the smeared potential with linear rise at large distances, Coulomb behavior at small
distances and spin-spin interaction. The variation of the smearing parameter transforms
the potential behavior significantly.

In the present paper the wave functions in the sense of RHD are calculated approximately
by the variational method. Wave function of ground state of harmonic oscillator is used
as a trial function.

The lepton decay constants of the present paper are in good agreement with lattice
calculations and existing experimental data. The ratios of these lepton decay constants
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agree well with the existing estimations, too.

The dependence of the lepton decay constants on quarks masses and uncertainties in
heavy—light meson masses is investigated in the present paper. The uncertainty in the
determination of the lepton decay constants from these dependences is varied through a
range from 1.4% to 4.9% for different heavy-light mesons.

In the present paper it is shown that the relativistic effects are important for the
lepton decay constants of B—, Bs—, D—, Ds— mesons.

The role of the corrections in the inverse mass of heavy quark 1/mg in the limit
mgq — oo is clarified for different pseudoscalar heavy-light mesons.

The model independent estimation of the possible relativistic corrections in the lepton
decay constant calculations in the potential approach is given.

The paper is organized as follows. In Sect. I we remind briefly the basic statements
of RHD, especially of the instant form of RHD. The wave functions of composite systems
are defined. In Sect. III the formulae for the lepton decay constants are derived in
the instant form of RHD. Corresponding expression is obtained from the method of
parameterization of electroweak current matrix element. In Sect.IV the procedure of
calculations is described. The wave functions of the pseudoscalar mesons are calculated
using variational method. The model parameters are discussed. Sect. V is devoted to the
discussion of the results. Comparison of the present results with the results of the other
approaches and experimental data is given. Sect.VI contains the conclusions.

2.Basic statements of RHD

Let us discuss the general features of RHD in brief (this approach has been detailed
in references [30, 31, 32]).

In the RHD employing constituent quarks [27], mesons are considered as bound
states of a quark ¢ and an antiquark @Q. In this formalism the interaction is introduced
in the generators of the Poincaré group without violating the form of the commutation
relations in the algebra of the generators. Technically, this is achieved by adding the
interaction operator 14 to the operator My of mass of the system free from interaction:
My — M;= My+V , MZ = (p1 + p2)> = P2 Here Mj is the mass operator of
the system of interacting partlcles In the instant form of RHD, the Poincaré algebra is
conserved under this modification of the mass operator, provided that V commutes Wlth

the operator J (J1 . Ja J3) of the total angular momentum, with the operator P of
the total 3—momentum, and with operator 6 p.

In the RHD formalism, the wave functions are calculated as eigenfunctions of the
complete set of commuting operators. In the instant form of RHD, the complete set of
commuting operators consists of the following operators:

M[:Mo-l—v, j2, Js P. (21)

In this version of dynamics, the operators J? , jg, and operator P do not involve
interaction; that is, they coincide with the corresponding operator of the free system.

There exists a basis in which the above three interaction—free operators are diagonal.
Thus, the calculation of the wave function of a composite system reduces to diagonalizing
the operator My in (2.1).

In the RHD formalism, the Hilbert space of states of a composite system is the tensor
product of two single-particle spaces: H,5 = H, ® Hg. For a basis in the space H,g, we
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can choose, for example, the set of vectors
| P1,ma; Pa,ma) = |prmi) @ |prma), (2.2)

<ﬁ7m|ﬁlml> = 2p06(ﬁ_ﬁl)§mm’ .
Here p} , p> are 3-momenta of particles, m; , ms are spin projections on the z axis,

po = /P2 +m2, my is the constituent quark mass.

To diagonalize the operators J? , jg, and P from the set (2.1), we make use of a basis
in which center—of-mass motion is separated explicitly. We take it in the form:

|P, Vs, J, 1, S, my). (2.3)

Here P, = (p1 + p2)pu, P/f = s, 4/s is the invariant mass of the two-particle system, [

is the orbital angular momentum in the center-of mass frame (C.M.S.), §2 = (S +
S3)2 = S(S+ 1), S is the total spin in C.M.S., J is the total angular momentum
with the projection m ;. The quantities [ and S are constructed as invariant degeneracy
parameters. The bases given by (2.2) and (2.3) are related to each other through the
Clebsch-Gordan expansion of Poincaré group (see e.g. [19]).

As in the basis (2.3) the operators J?2 | Js, Pin (2.1) are diagonal, one needs to
diagonalize only the operator My in (2.1) in order to obtain the system wave function.
The corresponding composite—particle wave function has the form [20]:

(P, /5, J, 1,8, ms| @) = N.6(P — 5.)8.1.50m,.m, ¢ié (k) . (2.4)

Here J., my, , p. are quantum numbers in state | U). The explicit form of N, will not
be used.

In pseudoscalar mesons J =1 = S = 0 and we use in equation (2.4) for simplicity the
notation: ¢is(k) — @(k) , p(k) is a phenomenological wave function normalized with
the account of relativistic density of states [20]:

p(k(s)) = \/Vs(1 —n?/s?)u (k) k nc/ Ju (k) K dk =1, (2.5)
[s2 — 25 (m2 +m3) + 2]/

2V/s
mg , mg are the masses of light and heavy quark respectively, n. = 3 is the number of

quark colors, n = mé — mg .

k =

3. Calculation of the lepton decay constant of the pseudoscalar
meson

Let us discuss now the calculation of the leptonic decay constants in our approach.
The leptonic decay constant of the pseudoscalar meson fp is determined by the matrix
element of the electroweak current [16]:

(01J#[W) = (O[J*|pe) = i fppl (3.6)

1
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where p. is 4-momentum of meson.

Let us expand the left-hand side of (3.6) in the basis given by (2.3). Since we have
J = 8§ =1 =0 for the pseudoscalar meson, the corresponding symbols are omitted in
basis vectors. Taking into account the explicit form of the meson wave function (2.4), we
can rewrite the equation (3.6) in the form

/ /5 (0171 V) 9(k(s) = bt gy (3.7)

Neg is the normalization factor of vectors in the basis (2.3). The explicit form of Neg
will not be used.

Following our method of construction of current transition matrix elements [20, 27, 34]
it is necessary to extract from the current matrix element in (3.7) the reduced matrix
elements (form factors) containing the dynamical information on the process and a part
which defines the transformation properties under Lorentz transformation. In the case
of pseudoscalar mesons our method has a simple form. The left-hand side of (3.7) can
be represented as a functional that is defined on the space of test functions and that
specifies a Lorentz covariant distribution (generalized function). This distribution can be
represented as the product of a Lorentz covariant smooth function and a Lorentz invariant
distribution [27]. Following [19, 20, 27|, we can therefore break down the integrand in (3.7)
into a covariant factor, which is a smooth function, and an invariant factor representing

the distribution: N )
E{0|JH|Pe, V/s) = i G(s) BH(s) ——== .
Ny O 3) = 660 B6)

The invariant form factor (reduced matrix element) G(s) is a distribution, 4—vector B*(s)
defines the transformation properties of matrix elements in (3.7). G(s) contains all the
dynamical information on the process. In what follows we shall formulate the physical
approximations not in terms of current operator but in terms of form factor G(s).

If the equality (3.7) is considered as the equality of functionals specifying distributions
on the space of test functions, the explicit form of the vector B, is

(3.8)

BH(s) = pt . (3.9)

To prove (3.9), it is sufficient to notice that the covariant factor on the right-hand side of
(3.7) (4—vector p#) remains unchanged when we go over from one function belonging to
the space of test functions to another. From (3.7)-(3.9), it follows that, for the leptonic
decay constant, we have the integral representation

/ Av5 G(s) p(k(s)) = fp . (3.10)

The form factor G(s) can generally be calculated within the Standard Model of
electroweak interactions. In this study, however, we will restrict ourselves by calculating
G(s) in the approximation of four—fermion interaction. For G(s), we take form factor
that parameterizes the weak current of the free two-quark system as

1

(O JH|P./5) = iGo(S)P“W :

(3.11)

The explicit form of the matrix element (3.11) is prescribed by the general method for
parameterizing the matrix elements of current operators (see e.g. [20, 27]).
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The representation (3.11) is analogous to the representation (3.6), but the constant
fp is replaced by the form factor, which depends on the invariant variable s.

To calculate Go(s), we expand (3.11) in single-particle basis (2.2). Equality (3.11)
then reduces to the form

_ 1 dpy dps
iGo(s) P ——— = —— ——(0[J§' [P, m1; P2, ma
) (2m)%/2 ml% i 2P10 2p20 o' )
X<ﬁl;ml;ﬁ27m2|ﬁa V), (3.12)
where i, = 1, 2, 3 is index of summation over quark color. The expressions for the

Clebsch-Gordan coefficients of the Poincaré group (p1, m1; pa, m2|15, /s) can be found in
[19]. The matrix element of the current in the basis specified by (2.2) is determined by
the standard expression for the matrix element of the leptonic—decay current [16]. As a
result we have

%’D(ﬁz,mz)v“(l +7°)u(pr, ma) - (3.13)

<O|J€|ﬁ17m1;ﬁ2; m2> - (27'('

Integration in (3.12) is performed in the reference frame where P =0. For Go(s), we
then obtain

Ne \/(qu (k) + mq)(WMQ (k) + mQ)
2V2r (Wi, (k) + wmg (k)

k2
* [1 (@, (B) +mg) (@i, (k) +mg)

here wy,, (k) = \/k? + m? , i = ¢,Q. The final expression for the lepton decay constants
of pseudoscalar mesons is following:

[ avsGols)ets) = fr. (3.15)

Go(s) =

, (3.14)

Equation (3.15) can be reduced to the following form:

fo= 2= [ o) (k) a (3.16)

Ne
V21

here

(mq +mg)? = (W, (k) = wmg (k)

Wi (k) wm, (k) (wm, (k) + wmg (k)
Let us remark that expression for the lepton decay constant of pseudoscalar mesons
(3.15) (or (3.16)) coincides with those ones in the light—front form [16] and the point

form [25] of RHD and in the dispersion relations approach [23]. However, for example,
the expressions for electromagnetic form factors are different in these approaches.

g (k)= (3.17)

4. Calculations

In this work we use the variational method for the approximate calculation of function
u(k) in equations (2.4), (2.5) (see [36], too). It the case of RHD this method is reduced
to the calculation of the minimum of the following functional:

Mp(a, B, 7,...) = (UM |¥) = (U|Mo|¥) + (¥[V|¥) . (4.18)
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Here o, 3, 7, ... are parameters including the parameters of trial function, Mp is meson
mass.

The matrix elements of Mo and V are calculated in momentum and coordinate
representations respectively:

(W] N | W) = n/ k2dk|u(k)|? (\/k2 +m2 + \/k2 +m%) : (4.19)

(V] 9) = n, / r2dr|ipo (r) 2V (r) | (4.20)

here u(k) is phenomenological wave function (2.4), (2.5), V() is the interaction operator
in coordinate representation. Wave function to(r) is determined as follows:

Yo(r) = \/%/ k% jo(kr)u(k) dk nc/r2|wo(r)|2dr:1,

where jo(x) is spherical Bessel function:

sin

Jolw) = —

For the interaction operator in coordinate representation f/(r) we use the smeared
potential with Coulomb behavior at small distances, linear confinement and spin—spin
interaction. The smearing is realized by the scheme [15, 37]:

7(r) = / P — 7YV (r) di

3
— —/ _ o 2/ = —/\2
p(F=7") = -y exp(—o“(F—7")%) . (4.21)

Here o is the smearing parameter.

This interaction incorporates wide varieties of models because the variation of the
smearing parameter transforms the potential behavior significantly.

The operator of interaction has the following form:

V(T) = VCoulomb(T) + %inear(r) + VSS(T) . (422)

The smeared Coulomb part of interaction is represented in the following way:

VCoulomb (T) - -

3
S 2 ert(rr) (4.23)

r
k=1

erf(z) = <%> /Ox exp(—t?) dt ,

here erf(x) is the error function.
The following parameterization of the running strong coupling constants was used to
obtain the representation (4.23) [15, 37]:

[SUARIEN

3
as(Q?) = > ax exp(—Q*/4%) , (4.24)
k=1
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here a; = 0.25, a2 =0.15, a3 =0.2,92 =1/4, v3 =5/2,v2 =250,

L L 1 1 1
qcritical zk:ak’ acritical — .60 , — _ - i =
The confining part of interaction has the form:
Viinear(r) = Br [exp\(/—%# + (1 + #) erf(ar)] +wp . (4.25)
Spin-spin part of the interaction is following;:
Vss(r) = —WE)L (gqgQ) exp(— o r?) Zak erf(y,r) . (4.26)
T MgMmQ -

Here Sy, Sg are spin operators of light and heavy quarks respectively.
As trial function in (4.19), (4.20) we use the wave function of the ground state of
harmonic oscillator:

u(k) = Nyo exp (-2’“—;) . (4.27)

Our relativistic approach to the calculation of the decay constant for B—, Bs—, D—,
D,—mesons contains the conventional set of the model parameters: parameter of the trial
function (4.27) b, masses of quarks m, = mg , ms , mp , m. as well as parameters of
the interaction operator in (4.22), (4.23), (4.25), (4.26) 3, o and wy.

Let us discuss the choice of the values of these parameters in our calculation. The
parameters of the trial functions b in (4.27) are determined by the minimum conditions
for the functional (4.18) if all other parameters are fixed:

Mp (b,mg,mq, B,0,wy) = min Mp (b,mq, mq, B,0,ws) - (4.28)

The parameters of the interaction operator in the CQM are determined usually in
a phenomenological way, from the description of meson spectra. The parameter of the
linear part of interaction in (4.25) is

f=0.18 GeV? . (4.29)

This value 3 was used in the current calculations (see e.g. [15, 26, 38, 39]).

The values of smearing parameter o in (4.21)-(4.26) are constrained by additional
condition on the difference of meson masses in the states with spin S = 1 and spin S =
0:

Mo=! (b, mq, mq, 3,0, wo) — M>=0 (b, mq, mq, B, 0, wo) = AMP. (4.30)

We used the values for the AM®*P from reference [40].
The parameter wy in (4.25) provides the fulfilling of the following equality:

min Mp (b, mq, mq, 8,0,wo) = Mg, (4.31)

where M 5™~ experimental value of the pseudoscalar meson mass [40.

We are coming now to the question of the choice of light quark masses in our
approach. The mass of light quark m, = mg and the mass of s-quark can be fixed
from the description of the experimental lepton decays constants for the pion and kaon
and experimental values of the pion and kaon masses.
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0.48 fromm = l+v
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0.44

7t and p-masses

0.42

0.4 — P
0.18 0.2 0.22 0.24

Puc. 1. Illustrative plots of the solution of the equalities (4.32) and (4.28) — (4.31) for b(m.) in
the case of pion.

If one uses the expressions (3.14), (3.15) for the calculation of the pion lepton decay
constant f; then the condition

fr =[P =130.7 £0.140.36 MeV , (4.32)

determines the implicit function b(m,, ). The experimental errors in (4.32) give an acceptable
values for b and m,, to satisfy the equality (4.32) (the domain between steeply two sloped
curves in figure 1). Pion wave function (4.27) is calculated by variational method with
interaction (4.21) — (4.26). Let us solve the system of equations (4.28) — (4.31) for the
pion parameters b , o and wy with different values of mass m,, and following experimental
values [40]:

M7, = 139.56995 + 0.00035 MeV ,

exp

AM®™ = MP — M™ = 627.33 £ 0.8 MeV , (4.33)

here M™ | M?” are pion and p-meson masses respectively. The solution of the equations
(4.28) — (4.31) depends on the experimental errors in (4.33) weakly. Values b as the
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solution of the equations (4.28) — (4.31) with different m,, determine the function b(m,,)
(increasing curve in figure 1).

So, a simultaneous solution of equations (4.32) and (4.28) — (4.31) exists for following
light—quark masses only (see figure 1):

my = mq = 0.200 £ 0.01 GeV . (4.34)
Analogous procedure can be performed for kaon using (4.32):
[k =P =160.6 £1.4 MeV , (4.35)
and experimental values of the corresponding meson masses from reference [40]:

MX —=493.677 + 0.016 MeV ,

exp

AME™P = ME" — MK = 397.944 +0.24 MeV (4.36)

here M5 | MX" are masses of the scalar K-meson and K*-meson. The case of the
s-quark mass is illustrated in figure 2. Taking into account (4.34) we obtain:

ms = 0.380 £ 0.100 GeV . (4.37)

It is interesting to remark that our value of mass for u- and d-quarks is close to that
obtained by appreciably model independent way in reference [41]. Let us note that the
masses of u— and s-quarks (4.34), (4.37) give for SU(3)-breaking parameter:

(ms —my)/my, =0.9.

This value is considerably greater than in reference [42]: ~ 0.37 .
The following values for the heavy quark masses are the most used in current calculations:

1.30 < m. < 1.88 GeV 4.60 < mp < 5.28 GeV . (4.38)

The m. and mp were varied in our calculations in these intervals. Uncertainty in
the values of quark masses (4.34), (4.37), (4.38) is the main source of the theoretical
uncertainty in the calculation of the lepton decay constants in our work. Uncertainties of
our results associated with uncertainties in the values of meson masses are insignificant.

The results of our calculation of the constants fp, fns, fp, fps are given in 1.
Presented values are obtained using the mean values of parameters in the intervals (4.34),
(4.37) and (4.38).

5.Results

Let us discuss the results of calculation. The firm experimental data exist for the
value of fps only. Therefore the calculation of this value can serve to test our theoretical
predictions for other lepton constants. This statement is particularly important for the
constant fp because the measurement of fg from B — [ ; decay is currently not feasible
[44]. Our result for fps coincides with experiments in the limits of experimental errors.
It should be remarked that our fps is in good agreement with lattice and sum rules
calculations.

The last remark is true for the constant fp obtained in this paper, too.

Our constant fps is in reasonably good agreement with lattice calculations, but our
result correlates poorly with the recent sum rules calculation [13].
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041 1 from K and K~ masses
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Mg

Puc. 2. Illustrative plots of the solution of the equalities (4.32) and (4.28) — (4.31) for b(ms) in
the case of kaon.

Finally, our value of fp agrees closely with an average over different calculations on
the lattice [9, 10] and with that in sum rules [12]. The only experimental result for fp
[43] has large errors and corresponding minor criticality for existing calculations.

Let us remark that obtained in present paper ratios of the lepton decay constants are
in good agreement with the lattice calculations [8] (taking into account our theoretical
uncertainty):

5. _ 1.203(29)(28) (£38) o, _ 1.182(39)(25) (fo') - (5.39)
B D

Our approach gives the model independent estimation for the lepton decay constant
in the CQM with the help of equations (3.16),(3.17). Using the fact that function (3.17)
in equation (3.16) is monotonically decreasing we can obtain the upper and lower limits
for the lepton decay constant:

%gm) / B u(k)dk < fp < %g(ma / Ru(k)dk. — (5.40)
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Ta6smma 1. The lepton decay constants of heavy-light pseudoscalar mesons. Presented values
were obtained with the mean values of parameters in the intervals (4.34), (4.37) and (4.38). The
values are given in MeV. The stared theoretical values are averages over different calculations.
The stared experimental value is a current world average.

/B IBs Ip IDs
Present paper 145+ 2 189+ 4 194+ 6 246+ 12
Lattice 160752 [2] 185740 2] 194798 |2] 212739 [2]
calculations 147738 [3] 175730 3] 1927%72 [4] 210739 [4]
BT ATl 2mntiefe] 24073 [5)
igf’ﬁ?ﬁ; 6] 204752 (6] 225430* [9, 10] 2315%0[6]
5 18] 187434 [7] 223711917]
200+30* [9, 10]  24278% [8]
Sum rules 178-+£42* [12) 232425 [13]  188+48* [12) 23124 [11]
19520 [12]
Experiments 3001180480 143]  280+48* [40]

2864+44+41 [44]

The nonrelativistic expression for the lepton decay constant can be obtained from the
equation (3.15) by taking the nonrelativistic limit which gives the standard form for the
CQM in terms of coordinate space wave function in the origin:

NR __ \/inc n

(&
P mg Fmgn ﬁ,/mq—i—meo
So, we have the following model independent estimation from equations (5.40) and (5.41):

1
Vmg +mg g(mg) < _ij\I:R < 3 mq +mgq g(myg) . (5.42)
P

E* u(k) dk = (0) . (5.41)

|~

The upper and lower limits are independent on the model of quark—antiquark interaction
in the heavy-light mesons.

It is possible to obtain the approximate model independent estimation for the relativistic
corrections for the lepton decay constant in the framework of the CQM:

o=+ AfE. (5.43)

Corresponding estimation is given by following inequalities:
1
5 mg +mgog(mg) —1 < —7= < —y/mg+mgg(mg) —1. (5.44)

The relativistic correction A f& has the negative sign.

Let us discuss briefly the relativistic effects obtained in our calculations. Corresponding
estimation can be obtained by comparison of equations (3.15) and (5.41). The relativistic
effects are very significant and have following values for the calculated constants: for fp
and fps they are 28% and 24%, for the more light mesons fp and fp, they are 43% and
40%, respectively.

It is interesting to calculate the lepton decay constants in the limit mg — oo (see
[45] also). The corresponding asymptotic estimation of the integral representation (3.15)
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with wave function (4.27) gives the following expression for the leading term:

V2n, b3/2

fr~ Y2 .
/4 1/2

(5.45)

Using the values parameters listed above we obtain: fps, = 146 MeV, fpsoo = 182 MeV,
fDoo = 256 MeV, fpseo = 321 MeV. One can see that the leading term gives good
description for B, Bs;— mesons, while it is not true for D, Ds— mesons (compare with 1).

It is important to emphasize that the sensibility of our results to the variation of
quark masses in the intervals (4.34), (4.37) and (4.38) is weak. The change of the quark
masses in this interval gives rise to the change of the lepton decay constants for B-meson
not more than 1.4%, for Bs-meson — 2.1%, D-meson — 3.1%, Ds-meson — 4.9%.

6. Conclusion

In the present paper the lepton decay constants of the heavy-light mesons B, Bs,
D, D, are calculated in the framework of the instant form of relativistic Hamiltonian
dynamics. Interaction between constituent quarks is taken in the form of the smeared
potential with linear rise at large distances, Coulomb behavior at small distances and
spin-spin interaction. Wave functions of mesons in sense of RHD are calculated by
variational method. Results are in good agreement with lattice calculations and existing
experiments.

The importance of relativistic corrections is established for all the mesons. For the
B—, B;—mesons it is obtained that the corrections in the inverse mass of the heavy quark
1/mg are small in the limit mg — oo.

Model independent constraints are obtained for the relativistic corrections to the
lepton decay constants in the constituent quark model. It is obtained that the values of
these corrections in the different version CQM can be varied in the wide limits.

O.L.S. is grateful to N. Nikitin for numerous useful discussions. This work was supported
in part by the program "Russian Universities — Basic Researches" (grant UR.02.01.013),
Russian Ministry of Education (grant E02-3.1-34) and Belarussian Foundation of Basic
Researches (grant F003-112).
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