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COMPUTER MODELING OF PHYSICAL PROCESSES, DEVICES,
SYSTEMS IN INDUSTRY AND EDUCATION

RADIATIVE DECAYS OF VECTOR MESONS IN POICARE-COVARIANT
QUARK MODEL
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GSU named after Fr. Skaryna, Gomel, Belarus

Radiative decays of vector mesons is a handy tool for studying the structure of hadrons as these
processes are "purely" hadrons and don’t require additional relations of electroweak theory. In our
work, the calculation of the form-factor of the radiative decay conducted within the constituent
relativistic quark model based on the point form of Poincare-invariant quantum mechanics or
Relativistic Hamiltonian dynamics (RHD): work in this form RHD has several advantages in the
calculations, one of which is a match 4-rates for systems with and without interaction.

V — Py decay in Relativistic Hamiltonian dynamics. The expression for the decay
constants can be parameterized using the 4-velocities of the initial and final meson by the following
expression:
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where K“(u) =ig™"’¢, (y)VpV(j . This parameterization is convenient for a point form of RHD.
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In this paper, we consider mesons V (Q,M) and P(Q',M’) as relativistic constituent quark g
and anti-quark Q system in the framework of Poincare-invariant quantum mechanics. In this
approach, this decay is caused by the emission of a » -quantum by the quark, entering the meson V.
Since the Poincare-invariant quantum mechanics allows to relate the state vector mesons with the state
vector of its constituent quarks p, =(a, (p.), B) and p, :(a)ma(pz), p,). we shall construct a

basis of the direct product of two quark masses m, and mg with helicity 4, and4,:
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Using the Clebsch-Gordan decomposition of the Poincare group for the scheme with «L-S» scheme [1],
write down the initial and final condition using the full and relative momentum of the two quarks [2] :
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with the Clebsch-Gordon coefficients:
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Compliance with the requirements of the Poincare-invariance in the framework of the point form RGD
in expressions (3) and (4) has led to the appearance of the wave functions of vector ¥*(k) and
scalar ®(k') meson as bound systems, which, given the number of quark colors normalized
expression
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Substitution of the electromagnetic current operator
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in the expression (1) using the expression (3), (4) and (5) leads us to
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To further simplification of expression (9) we use the transformation formula Dirac bispinors [1]
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and the transformation law of the state vectors
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After a series of simplifications of the expression (9), we finally obtain:
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Calculation of the form factor vay(qz) in the generalized Breit system. For generalized
Breit system we have Vg +Vy =0 (13)

and, as a consequence, B(ug) =B(uy) (14)

where  the  boost  operator B(u;j)  have  properties B_l(UQ):B(—UQ) and
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Using the vectors
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and the transformation law of the state vectors, the expression (12) simplifies to
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or, using the explicit form of the operator 1*,
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where «, and K
I, =1(m,,my), 1, =1(my,m,) - integrals of expression (16).

accordingly, the anomalous magnetic moments of the quark and antiquark, a

Choosing the wave functions of pseudoscalar and vector mesons in the form
2
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for the parameters £, obtained on the basis of experimental data on leptonic decays of hadrons [4],
carrying out numerical integration, we find that for certain values of the anomalous magnetic
moments:  x, = 0,1404, x, = 0.1114, x, =0,1957 (in natural units), we describe the

experimentally known decay widths p" — 77y, K - K% and k= k.
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SOME METHODS OF NUMERICAL SOLUTION QUASI-LINEAR HEAT
CONDUCTION PROBLEMS
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Problem of quasi-linear heat conduction is not new. Some information about this subject you
can find in [1].

The questions of finding the approximate (numerical) solution of linear problems are studied in
details. However, the question of finding the numerical solution of second order quasi-linear problems
of parabolic type is studied much lesser. Level of accuracy of the approximate solutions of such
problems is not more than 1E-3 — 1E-4. First of all, level of accuracy depends on the period of time
where an approximate solution is sought.

In this paper, you can find the solution of number quasi-linear problems of parabolic type. We tried to
largely remove the existing restrictions on the maximum achievable accuracy by these problems.

In these problems, we tried to largely remove the existing restrictions on the maximum
achievable accuracy.

Material and methods. We know that the quasi-linear equation of the heat conduction is:
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u, = aX(K(x,t,u) ax)+ f(x,t,u).

The problem is to find an approximate solution of equation (1) that satisfies the initial and edge
conditions:
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