> Член-корреспондент АН СССР В. В. КОРШАК, С. А. ПАВЛОВА, П. Н. ГРИБКОВА, И. В. ВЛАСОВА, А. Л. РУСАНОВ, В. В. РОДЭ

О ВЛИЯНИИ ВЛАГИ НА ТЕРМОДЕСТРУКЦИЮ ПОЛИБЕНЗОИЛЕНБЕНЗИМИДАЗОЛОВ

Ранее рядом авторов было предпринято изучение процессов термической и термоокислительной деструкции различных полибензоиленбензимилазолов (1-7). Большинством авторов высказано предположение, что относительная низкая термостойкость исследованных полимеров обусловдена химической дефектностью макромолекул, в частности, низкой степенью пиклизации. Наличие незациклизованных звеньев может быть связано как с затруднениями, возникающими в ходе процесса циклизации, так и с реакциями понного расщепления бензоиленбензимидазольных циклов. Нами было предпринято изучение устойчивости полимеров, содержащих 1,2-бензоиленбензимидазольный цикл, к гетеролитическим реакциям их разложения. Поскольку полибензоиленбензимидазолы, синтезированные станлартных **V**СЛОВИЯХ (максимальная температура циклизации (350°), имеют степень циклизации около 70% (4, 8), на процессы разложения 1,2-бензоиленбензимидазольного цикла будет накладываться деструкция незациклизованных фрагментов полимера. Поэтому исследование гидродиза бензопленбензимидазольных циклов в чистом виде мы проводили на 1,2-бензоиленбензимидазоле — простейшем соединении, моделирующем полибензоиленбензимидазолы.

1,2-бензоиленбензимидазол был получен и очищен по рапее описанной методике (9). Т. пл. $212-213^{\circ}$, что соответствует литературным данным (9).

В качестве исследуемого полибензоиленбензимидазола был выбран полимер, отвечающий идеализированной структурной формуле

Этот полимер был получен по рансе описанной методике (10). Полимер очищали экстракцией в аппарате Сокслета метанолом и сушили в вакууме при $100-120^{\circ}$. Содержание влаги в высушенных образцах полимера составляло $0.8 \div 1.2\%$, а в 1.2-бензоиленбензимидазоле 0.1% по Фишеру.

Деструкцию модельного соединения и полимера проводили в изотермических условиях в вакууме $2 \cdot 10^{-5}$ мм рт. ст. Была изучена деструкция образцов модельного соединения и полимера: а) тщательно высушенных в вакууме при 120° и б) в присутствии избытка влаги. Продукты разложения анализировали на хроматографе «Цвет-4».

Было установлено, что глубина и характер разложения 1,2-бензоиленбензимидазола существенно зависят от условий проведения деструкции. Так, если газообразные продукты разложения в высушенном образце начинают появляться только при температуре 435°, то в атмосфере, насыщенной парами воды, уже при 350° обнаруживаются заметные количества CO₂, а начиная с 425°, появляется и окись углерода (табл. 1). Образование газообразных продуктов деструкции 1,2-бензоиленбензимидазола в присутствии воды посит сложный характер: в диапазоне температур $350 \div 450^{\circ}$ скорость их образования довольно велика, выше 450° наблюдается ее заметное снижение.

Для того, чтобы оценить влияние влаги на устойчивость 1,2-бензоиленбензимидазола, было проведено количественное определение СО и СО₂. Было обнаружено, что количество СО₂ в тщательно высушенном образце

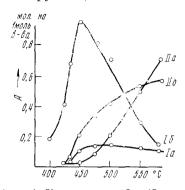


Рис. 1. Количества CO₂ (I) и CO (II), образующихся при деструкции тщательно высушенного образца (a) и образца, содержащего 50—60 вес. % влаги (б)

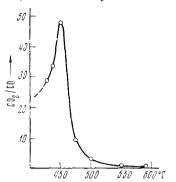


Рис. 2. Изменение соотношений окислов углерода при деструкции 1,2-бензоиленбензимидазола, содержащего 50—60 вес. % влаги

в интервале температур $450-550^{\circ}$ составляет примерно одну и ту же величину, т. е. процесс образования CO_2 с ростом температуры практически не развивается (рис. 1). При проведении же деструкции 1,2-бензоилсибензимидазола в присутствии влаги в интервале $350 \div 450^{\circ}$ происходит интенсивное выделение CO_2 (табл. 1).

Выше 450° в заметной степени начинают развиваться реакции образования СО и снижается скорость образования СО₂ (рис. 1). Количественная оценка газообразных продуктов деструкции 1,2-бензоиленбензими-

Таблица 1 Состав газообразных продуктов деструкции полимера и 1,2-бензоиленбензимидазола в вакууме в течение 1 часа

_				only y had .			•						
T-pa,	Условия проведе- ния	Газообразнные продукты деструкции											
		общее	CO ₂		СО		$_{ m H_2}$		CH4				
	деструк- ции	колич., %	вес. %	A.	вес. %	A	вес. %	A	вес. %	A			
1,2-Бензоиленбензимидазол													
400	a	-	-		ı — ı		! - !	_	1				
435	б а б	3,65 1,53	$\begin{array}{c c} 3,65 \\ 0,88 \end{array}$	0,183 $0,044$	0,65	0,052	Сле	— ды	-	_			
450	a	13,75	13,53 2,30	0,680	$\begin{bmatrix} 0,22 \\ 2,71 \end{bmatrix}$	$0,016 \\ 0,213$))		_	_			
500	б а б	19,45	19,21 3,01	$0,962 \\ 0,152$	$\begin{bmatrix} 0,24 \\ 5,25 \end{bmatrix}$	$0,019 \\ 0,413$	0,012	0,014		_			
550	о а б	16,83 9,56 12,63	$egin{array}{c} 14,22 \ 2,46 \ 5,89 \ \end{array}$	$0,710 \ 0,123 \ 0,295$	$\begin{bmatrix} 2,60 \\ 6,94 \\ 6,57 \end{bmatrix}$	$0,212 \\ 0,542 \\ 0,512$	$\begin{bmatrix} 0,014 \\ 0,162 \\ 0,173 \end{bmatrix}$	0,015 $0,180$ $0,191$	Сле				
Полибензоиленбензимидазол													
450	а б		$\begin{bmatrix} 3,81 \\ 13,20 \end{bmatrix}$		0,71		Сле »	ды	=	_			

Примечания. а — образцы высущены в вакууме при 120°, б — образцы содержали 5 0—60 вес. % воды, A — в молях на моль структурной единицы вещества.

Изменение количества продуктов разложения 1,2-бепзоиленбензимидазола в вакууме при 425° (в молях на моль вещества)

Продукты	Продолжительность нагревания, час.									
пинэжолеви	1	2	3	5	8	10				
СО ₂ СО Н ₂ 2-фенилбеизн- мидазол	$0,41 \\ 0,014 \\ -0,34$	0,85 0,015 - 0,69	0,91 0,016 0,87	$ \begin{vmatrix} 0.95 \\ 0.018 \\ 0.002 \\ 0.90 \end{vmatrix} $	$\begin{bmatrix} 1,00\\0,021\\0,008\\0,93 \end{bmatrix}$	0,98 0,023 0,008 0,91				

дазола и соотношения окислов углерода показали, что в температурном интервале $350-450^{\circ}$ процесс распада 1,2-бензоиленбензимидазола сопровождается в основном выделением CO_2 (рис. 1); при $450-550^{\circ}$ развиваются процессы, связанные с образованием CO_3 (табл. 1).

Исследование гидролитической устойчивости 1,2-бензопленбензимидазола в изотермических условиях при 425° в течение 10 час. показало, что уже через 3 часа процесс разложения заканчивается почти с количественными выходами CO₂ и 2-фенилбензимидазола (табл. 2).

Полученные данные позволяют сформулировать наиболее вероятный ход деструкции 1,2-бензоиленбензимидазола в данных условиях:

I. Гетеролитический распад N-C -связи бецзоиленбензимидазоль-

ного цикла

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

II. Гомолитический распад
$$N-C$$
 -связи 0

Отсюда следует, что в интервале $350 \div 450^\circ$ распад 1,2-бензоиленбензимидазольного цикла в присутствии влаги обусловливается в первую очередь реакцией высокотемпературного гидролиза. Выше 450° наряду с гидролизом начинает развиваться и гомолитический распад соединения, в результате которого образуются большие количества СО.

Поскольку ранее было показано (11), что реакция циклизации N-(o-аминофенил)-фталановой кислоты до 1,2-бензоиленбензимидазола

чолученные данные можно рассматривать как подтверждение равновесного характера рассматриваемой реакции циклизации (*).

Результаты, указывающие на протекание реакций высокотемпературного гидролиза, были получены и при исследовании термодеструкции полибензоиленбензимидазола (см. табл. 1).

Таким образом, наличие CO₂ в продуктах деструкции полибензоиленбензимидазолов в присутствии влаги является следствием не только дефектности макромолекул, которая связана с процессами незавершенности реакций циклизации (4, 6), но и реакцией высокотемпературного гидролиза 1,2-бензоиленбензимидазольного цикла.

На основании полученных данных можно предположить, что незациклизованные звенья возникают в полигетероариленах не только вследствие определенных трудностей в ходе реакции циклизации, но и в результате гидролиза продуктов пиклизации.

Институт элементоорганических соединений Академии наук СССР Москва Поступило 13 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ V. H. Bell, R. A. Javell, J. Polym. Sci., 5, A-1, 3043 (1967). ² R. A. Javell, J. Polym. Sci., 12, 1137 (1968). ³ Э. Н. Телешов, Н. Б. Фельдблюм, А. Н. Праведников, Высокомолек. соед., A10, 422 (1968). ⁴ А. С. Телешова, Э. Н. Телешов, А. Н. Праведников, Высокомолек. соед., A13, 2309 (1971). ⁵ А. П. Рудаков, Ф. С. Флоренский и др., Высокомолек. соед., A14, 169 (1972). ⁶ В. В. Родэ, Е. М. Бондаренко и др., Высокомолек. соед., Б13, 732 (1971). ⁷ В. В. Коршак, Ю. Е. Дорошенко и др., ДАН, 200, № 6, 1361 (1971). ⁸ И. Б. Рабинович, А. Н. Мочалов и др., ДАН, 198, 597 (1971). ⁹ В. В. Коршак, А. Л. Русанов, Р. Д. Кацарава, Высокомолек. соед., A11, 2090 (1969). ¹⁰ В. В. Коршак, А. Л. Русанов, Р. Д. Кацарава, Высокомолек. соед., A14, 486 (1972). ¹¹ Р. Д. Кацарава, Кандидатская диссертация МХТИ им. Д. И. Менделеева, (1971).